DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain
- URL: http://arxiv.org/abs/2207.07340v1
- Date: Fri, 15 Jul 2022 08:35:44 GMT
- Title: DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain
- Authors: Yuxi Mi, Yuge Huang, Jiazhen Ji, Hongquan Liu, Xingkun Xu, Shouhong
Ding, Shuigeng Zhou
- Abstract summary: DuetFace is a privacy-preserving face recognition method that employs collaborative inference in the frequency domain.
The proposed method achieves a comparable recognition accuracy and cost to the unprotected ArcFace and outperforms the state-of-the-art privacy-preserving methods.
- Score: 23.4606547767188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the wide application of face recognition systems, there is rising
concern that original face images could be exposed to malicious intents and
consequently cause personal privacy breaches. This paper presents DuetFace, a
novel privacy-preserving face recognition method that employs collaborative
inference in the frequency domain. Starting from a counterintuitive discovery
that face recognition can achieve surprisingly good performance with only
visually indistinguishable high-frequency channels, this method designs a
credible split of frequency channels by their cruciality for visualization and
operates the server-side model on non-crucial channels. However, the model
degrades in its attention to facial features due to the missing visual
information. To compensate, the method introduces a plug-in interactive block
to allow attention transfer from the client-side by producing a feature mask.
The mask is further refined by deriving and overlaying a facial region of
interest (ROI). Extensive experiments on multiple datasets validate the
effectiveness of the proposed method in protecting face images from undesired
visual inspection, reconstruction, and identification while maintaining high
task availability and performance. Results show that the proposed method
achieves a comparable recognition accuracy and computation cost to the
unprotected ArcFace and outperforms the state-of-the-art privacy-preserving
methods. The source code is available at
https://github.com/Tencent/TFace/tree/master/recognition/tasks/duetface.
Related papers
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
We present a novel face privacy protection scheme with improved transferability while maintain high visual quality.
We first exploit global adversarial latent search to traverse the latent space of the generative model.
We then introduce a key landmark regularization module to preserve the visual identity information.
arXiv Detail & Related papers (2024-07-18T02:16:11Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
Face recognition has led to increasing privacy concerns.
This paper explores face image protection against viewing and recovery attacks.
We distill our methodologies into a novel privacy-preserving face recognition method, MinusFace.
arXiv Detail & Related papers (2024-03-19T05:27:52Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
Face image is a sensitive biometric attribute tied to the identity information of each user.
This paper proposes a hybrid frequency-color fusion approach to reduce the input dimensionality of face recognition.
It has around 2.6% to 4.2% higher accuracy than the state-of-the-art in the 1:N verification scenario.
arXiv Detail & Related papers (2024-01-24T11:27:32Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Privacy-Preserving Face Recognition Using Random Frequency Components [46.95003101593304]
Face recognition has sparked increasing privacy concerns.
We propose to conceal visual information by pruning human-perceivable low-frequency components.
We distill our findings into a novel privacy-preserving face recognition method, PartialFace.
arXiv Detail & Related papers (2023-08-21T04:31:02Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.