Automatic dataset generation for specific object detection
- URL: http://arxiv.org/abs/2207.07867v1
- Date: Sat, 16 Jul 2022 07:44:33 GMT
- Title: Automatic dataset generation for specific object detection
- Authors: Xiaotian Lin, Leiyang Xu, Qiang Wang
- Abstract summary: We present a method to synthesize object-in-scene images, which can preserve the objects' detailed features without bringing irrelevant information.
Our result shows that in the synthesized image, the boundaries of objects blend very well with the background.
- Score: 6.346581421948067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past decade, object detection tasks are defined mostly by large public
datasets. However, building object detection datasets is not scalable due to
inefficient image collecting and labeling. Furthermore, most labels are still
in the form of bounding boxes, which provide much less information than the
real human visual system. In this paper, we present a method to synthesize
object-in-scene images, which can preserve the objects' detailed features
without bringing irrelevant information. In brief, given a set of images
containing a target object, our algorithm first trains a model to find an
approximate center of the object as an anchor, then makes an outline regression
to estimate its boundary, and finally blends the object into a new scene. Our
result shows that in the synthesized image, the boundaries of objects blend
very well with the background. Experiments also show that SOTA segmentation
models work well with our synthesized data.
Related papers
- Salient Object Detection for Images Taken by People With Vision
Impairments [13.157939981657886]
We introduce a new salient object detection dataset using images taken by people who are visually impaired.
VizWiz-SalientObject is the largest (i.e., 32,000 human-annotated images) and contains unique characteristics.
We benchmarked seven modern salient object detection methods on our dataset and found they struggle most with images featuring large, have less complex boundaries, and lack text.
arXiv Detail & Related papers (2023-01-12T22:33:01Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments [21.393674766169543]
We introduce the Few-Shot Object Learning dataset for object recognition with a few images per object.
We captured 336 real-world objects with 9 RGB-D images per object from different views.
The evaluation results show that there is still a large margin to be improved for few-shot object classification in robotic environments.
arXiv Detail & Related papers (2022-07-06T05:57:24Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
We take advantage of object-centric images to improve object detection in scene-centric images.
We present a simple yet surprisingly effective framework to do so.
Our approach can improve the object detection (and instance segmentation) accuracy of rare objects by 50% (and 33%) relatively.
arXiv Detail & Related papers (2021-02-17T17:27:21Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
We argue that captions contain much richer information about the image, including attributes of objects and their relations.
We present a method that uses the attributes in this "textual scene graph" to train object detectors.
We empirically demonstrate that the resulting model achieves state-of-the-art results on several challenging object detection datasets.
arXiv Detail & Related papers (2020-09-30T10:59:20Z) - Evaluating Salient Object Detection in Natural Images with Multiple
Objects having Multi-level Saliency [3.464871689508835]
Salient object detection is evaluated using binary ground truth with the labels being salient object class and background.
Our dataset, named SalMoN (saliency in multi-object natural images), has 588 images containing multiple objects.
arXiv Detail & Related papers (2020-03-19T00:06:40Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
We develop a layout-to-image-generation method to generate complex scenes with multiple objects.
Our method learns representations of the spatial relationships between objects in the scene, which lead to our model's improved layout-fidelity.
We introduce SceneFID, an object-centric adaptation of the popular Fr'echet Inception Distance metric, that is better suited for multi-object images.
arXiv Detail & Related papers (2020-03-16T21:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.