Source-free Unsupervised Domain Adaptation for Blind Image Quality
Assessment
- URL: http://arxiv.org/abs/2207.08124v1
- Date: Sun, 17 Jul 2022 09:42:36 GMT
- Title: Source-free Unsupervised Domain Adaptation for Blind Image Quality
Assessment
- Authors: Jianzhao Liu, Xin Li, Shukun An, Zhibo Chen
- Abstract summary: Existing learning-based methods for blind image quality assessment (BIQA) are heavily dependent on large amounts of annotated training data.
In this paper, we take the first step towards the source-free unsupervised domain adaptation (SFUDA) in a simple yet efficient manner.
We present a group of well-designed self-supervised objectives to guide the adaptation of the BN affine parameters towards the target domain.
- Score: 20.28784839680503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing learning-based methods for blind image quality assessment (BIQA) are
heavily dependent on large amounts of annotated training data, and usually
suffer from a severe performance degradation when encountering the
domain/distribution shift problem. Thanks to the development of unsupervised
domain adaptation (UDA), some works attempt to transfer the knowledge from a
label-sufficient source domain to a label-free target domain under domain shift
with UDA. However, it requires the coexistence of source and target data, which
might be impractical for source data due to the privacy or storage issues. In
this paper, we take the first step towards the source-free unsupervised domain
adaptation (SFUDA) in a simple yet efficient manner for BIQA to tackle the
domain shift without access to the source data. Specifically, we cast the
quality assessment task as a rating distribution prediction problem. Based on
the intrinsic properties of BIQA, we present a group of well-designed
self-supervised objectives to guide the adaptation of the BN affine parameters
towards the target domain. Among them, minimizing the prediction entropy and
maximizing the batch prediction diversity aim to encourage more confident
results while avoiding the trivial solution. Besides, based on the observation
that the IQA rating distribution of single image follows the Gaussian
distribution, we apply Gaussian regularization to the predicted rating
distribution to make it more consistent with the nature of human scoring.
Extensive experimental results under cross-domain scenarios demonstrated the
effectiveness of our proposed method to mitigate the domain shift.
Related papers
- Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
Differentiable Expected Calibration Error [50.86671887712424]
The prevalence of domain adaptive semantic segmentation has prompted concerns regarding source domain data leakage.
To circumvent the requirement for source data, source-free domain adaptation has emerged as a viable solution.
We propose a novel calibration-guided source-free domain adaptive semantic segmentation framework.
arXiv Detail & Related papers (2023-08-06T03:28:34Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
Existing Source-free Unsupervised Domain Adaptation approaches exhibit catastrophic forgetting.
We propose a Continual SUDA (C-SUDA) framework to cope with the challenge of SUDA in a continual learning setting.
arXiv Detail & Related papers (2023-04-14T20:11:05Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
Domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled or a less labeled but related target domain.
Due to the imbalance between the amount of annotated data in the source and target domains, only the target distribution is aligned to the source domain.
We propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer.
arXiv Detail & Related papers (2022-06-02T21:58:54Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
Unsupervised domain adaptation (UDA) improves classification performance on an unlabeled target domain by leveraging data from a fully labeled source domain.
We propose a model-agnostic two-stage learning framework, which greatly reduces flawed model predictions using soft pseudo-label strategy.
At the second stage, we propose a curriculum learning strategy to adaptively control the weighting between losses from the two domains.
arXiv Detail & Related papers (2021-12-03T14:47:32Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.