Bayesian Optimization for Macro Placement
- URL: http://arxiv.org/abs/2207.08398v1
- Date: Mon, 18 Jul 2022 06:17:06 GMT
- Title: Bayesian Optimization for Macro Placement
- Authors: Changyong Oh, Roberto Bondesan, Dana Kianfar, Rehan Ahmed, Rishubh
Khurana, Payal Agarwal, Romain Lepert, Mysore Sriram, Max Welling
- Abstract summary: We develop a novel approach to macro placement using Bayesian optimization (BO) over sequence pairs.
BO is a machine learning technique that uses a probabilistic surrogate model and an acquisition function.
We demonstrate our algorithm on the fixed-outline macro placement problem with the half-perimeter wire length objective.
- Score: 48.55456716632735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Macro placement is the problem of placing memory blocks on a chip canvas. It
can be formulated as a combinatorial optimization problem over sequence pairs,
a representation which describes the relative positions of macros. Solving this
problem is particularly challenging since the objective function is expensive
to evaluate. In this paper, we develop a novel approach to macro placement
using Bayesian optimization (BO) over sequence pairs. BO is a machine learning
technique that uses a probabilistic surrogate model and an acquisition function
that balances exploration and exploitation to efficiently optimize a black-box
objective function. BO is more sample-efficient than reinforcement learning and
therefore can be used with more realistic objectives. Additionally, the ability
to learn from data and adapt the algorithm to the objective function makes BO
an appealing alternative to other black-box optimization methods such as
simulated annealing, which relies on problem-dependent heuristics and
parameter-tuning. We benchmark our algorithm on the fixed-outline macro
placement problem with the half-perimeter wire length objective and demonstrate
competitive performance.
Related papers
- Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
We present a novel Bayesian optimization framework specifically tailored to address the limitations of BO.
Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of objectives.
We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations.
arXiv Detail & Related papers (2023-06-01T19:10:57Z) - Batch Bayesian Optimization via Particle Gradient Flows [0.5735035463793008]
We show how to find global optima of objective functions which are only available as a black-box or are expensive to evaluate.
We construct a new function based on multipoint expected probability which is over the space of probability measures.
arXiv Detail & Related papers (2022-09-10T18:10:15Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation [0.01652719262940403]
optimisation problems often have multiple conflicting objectives that can be computationally and/or financially expensive.
Mono-surrogate Bayesian optimisation (BO) is a popular model-based approach for optimising such black-box functions.
We extend previous work on BO by density-ratio estimation (BORE) to the multi-objective setting.
arXiv Detail & Related papers (2022-03-31T09:27:59Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Many Objective Bayesian Optimization [0.0]
Multi-objective Bayesian optimization (MOBO) is a set of methods that has been successfully applied for the simultaneous optimization of black-boxes.
In particular, MOBO methods have problems when the number of objectives in a multi-objective optimization problem are 3 or more, which is the many objective setting.
We show empirical evidence in a set of toy, synthetic, benchmark and real experiments that GPs predictive distributions of the effectiveness of the metric and the algorithm.
arXiv Detail & Related papers (2021-07-08T21:57:07Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.