On the Study of Sample Complexity for Polynomial Neural Networks
- URL: http://arxiv.org/abs/2207.08896v1
- Date: Mon, 18 Jul 2022 19:10:53 GMT
- Title: On the Study of Sample Complexity for Polynomial Neural Networks
- Authors: Chao Pan, Chuanyi Zhang
- Abstract summary: Among various kinds of neural networks architectures, sample neural networks (PNNs) have been recently shown to be analyzable by spectrum analysis.
In this paper, we extend the analysis in previous literature to PNNs and obtain novel results on sample complexity of PNNs.
- Score: 13.265045615849099
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As a general type of machine learning approach, artificial neural networks
have established state-of-art benchmarks in many pattern recognition and data
analysis tasks. Among various kinds of neural networks architectures,
polynomial neural networks (PNNs) have been recently shown to be analyzable by
spectrum analysis via neural tangent kernel, and particularly effective at
image generation and face recognition. However, acquiring theoretical insight
into the computation and sample complexity of PNNs remains an open problem. In
this paper, we extend the analysis in previous literature to PNNs and obtain
novel results on sample complexity of PNNs, which provides some insights in
explaining the generalization ability of PNNs.
Related papers
- Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures.
In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning.
arXiv Detail & Related papers (2024-04-17T08:42:42Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Spectral Neural Networks: Approximation Theory and Optimization
Landscape [6.967392207053043]
We present key theoretical aspects of Spectral Neural Network (SNN) training.
First, we present quantitative insights into the tradeoff between the number of neurons and the amount of spectral information a neural network learns.
arXiv Detail & Related papers (2023-10-01T17:03:47Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
We propose an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure.
The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models.
We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques.
arXiv Detail & Related papers (2020-06-30T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.