Achievable error exponents of data compression with quantum side
information and communication over symmetric classical-quantum channels
- URL: http://arxiv.org/abs/2207.08899v1
- Date: Mon, 18 Jul 2022 19:20:47 GMT
- Title: Achievable error exponents of data compression with quantum side
information and communication over symmetric classical-quantum channels
- Authors: Joseph M. Renes
- Abstract summary: A fundamental quantity of interest in Shannon theory, classical or quantum, is the optimal error exponent of a given channel W and rate R.
I show that a bound by Hayashi for an analogous quantity in privacy amplification implies a lower bound on the error exponent of communication over symmetric classical-quantum channels.
- Score: 8.122270502556372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental quantity of interest in Shannon theory, classical or quantum,
is the optimal error exponent of a given channel W and rate R: the constant
E(W,R) which governs the exponential decay of decoding error when using ever
larger codes of fixed rate R to communicate over ever more (memoryless)
instances of a given channel W. Here I show that a bound by Hayashi [CMP 333,
335 (2015)] for an analogous quantity in privacy amplification implies a lower
bound on the error exponent of communication over symmetric classical-quantum
channels. The resulting bound matches Dalai's [IEEE TIT 59, 8027 (2013)]
sphere-packing upper bound for rates above a critical value, and reproduces the
well-known classical result for symmetric channels. The argument proceeds by
first relating the error exponent of privacy amplification to that of
compression of classical information with quantum side information, which gives
a lower bound that matches the sphere-packing upper bound of Cheng et al. [IEEE
TIT 67, 902 (2021)]. In turn, the polynomial prefactors to the sphere-packing
bound found by Cheng et al. may be translated to the privacy amplification
problem, sharpening a recent result by Li, Yao, and Hayashi [arXiv:2111.01075
[quant-ph]], at least for linear randomness extractors.
Related papers
- Joint State-Channel Decoupling and One-Shot Quantum Coding Theorem [16.05946478325466]
We propose a joint state-channel decoupling approach to obtain a one-shot error exponent bound without smoothing.
We establish a one-shot error exponent bound for quantum channel coding given by a sandwiched R'enyi coherent information.
arXiv Detail & Related papers (2024-09-23T15:59:16Z) - Reliability Function of Classical-Quantum Channels [6.959602244161659]
We study the reliability function of general classical-quantum channels.
We prove a lower bound, in terms of the quantum Renyi information in Petz's form, for the reliability function.
arXiv Detail & Related papers (2024-07-17T08:30:27Z) - Tight lower bound on the error exponent of classical-quantum channels [2.7195102129094995]
A fundamental quantity of interest in Shannon theory, classical or quantum, is the error exponent of a given channel $W$ and rate $R.
Nearly matching lower and upper bounds are well-known for classical channels.
I show a lower bound on the error exponent of communication over arbitrary classical-quantum (CQ) channels.
arXiv Detail & Related papers (2024-07-15T18:00:01Z) - Communication Complexity of Common Randomness Generation with Isotropic
States [5.312109949216557]
The paper considers two communication models -- one-way classical communication and one-way quantum communication.
We show that in the case of classical communication, quantum isotropic states have no advantage over noisy classical correlation.
In the case of quantum communication, we demonstrate that the common randomness rate can be increased by using superdense coding on quantum isotropic states.
arXiv Detail & Related papers (2023-11-08T14:48:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Reliable Simulation of Quantum Channels: the Error Exponent [5.8303977553652]
We study the error exponent of quantum channel simulation, which characterizes the optimal speed of exponential convergence.
We obtain an achievability bound for quantum channel simulation in the finite-blocklength setting.
arXiv Detail & Related papers (2021-12-08T18:55:54Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.