Dynamic Prototype Mask for Occluded Person Re-Identification
- URL: http://arxiv.org/abs/2207.09046v1
- Date: Tue, 19 Jul 2022 03:31:13 GMT
- Title: Dynamic Prototype Mask for Occluded Person Re-Identification
- Authors: Lei Tan, Pingyang Dai, Rongrong Ji, Yongjian Wu
- Abstract summary: Existing methods mainly address this issue by employing body clues provided by an extra network to distinguish the visible part.
We propose a novel Dynamic Prototype Mask (DPM) based on two self-evident prior knowledge.
Under this condition, the occluded representation could be well aligned in a selected subspace spontaneously.
- Score: 88.7782299372656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although person re-identification has achieved an impressive improvement in
recent years, the common occlusion case caused by different obstacles is still
an unsettled issue in real application scenarios. Existing methods mainly
address this issue by employing body clues provided by an extra network to
distinguish the visible part. Nevertheless, the inevitable domain gap between
the assistant model and the ReID datasets has highly increased the difficulty
to obtain an effective and efficient model. To escape from the extra
pre-trained networks and achieve an automatic alignment in an end-to-end
trainable network, we propose a novel Dynamic Prototype Mask (DPM) based on two
self-evident prior knowledge. Specifically, we first devise a Hierarchical Mask
Generator which utilizes the hierarchical semantic to select the visible
pattern space between the high-quality holistic prototype and the feature
representation of the occluded input image. Under this condition, the occluded
representation could be well aligned in a selected subspace spontaneously.
Then, to enrich the feature representation of the high-quality holistic
prototype and provide a more complete feature space, we introduce a Head Enrich
Module to encourage different heads to aggregate different patterns
representation in the whole image. Extensive experimental evaluations conducted
on occluded and holistic person re-identification benchmarks demonstrate the
superior performance of the DPM over the state-of-the-art methods. The code is
released at https://github.com/stone96123/DPM.
Related papers
- Latent Diffusion Models for Attribute-Preserving Image Anonymization [4.080920304681247]
This paper presents the first approach to image anonymization based on Latent Diffusion Models (LDMs)
We propose two LDMs for this purpose: CAFLaGE-Base exploits a combination of pre-trained ControlNets, and a new controlling mechanism designed to increase the distance between the real and anonymized images.
arXiv Detail & Related papers (2024-03-21T19:09:21Z) - Dynamic Patch-aware Enrichment Transformer for Occluded Person
Re-Identification [14.219232629274186]
We present an end-to-end solution known as the Dynamic Patch-aware Enrichment Transformer (DPEFormer)
This model effectively distinguishes human body information from occlusions automatically and dynamically.
To ensure that DPSM and the entire DPEFormer can effectively learn with only identity labels, we also propose a Realistic Occlusion Augmentation (ROA) strategy.
arXiv Detail & Related papers (2024-02-16T03:53:30Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
We propose a novel Hierarchical Forgery for Multi-modality Face Forgery Detection (HFC-MFFD)
The HFC-MFFD learns robust patches-based hybrid representation to enhance forgery authentication in multiple-modality scenarios.
The specific hierarchical face forgery is proposed to alleviate the class imbalance problem and further boost detection performance.
arXiv Detail & Related papers (2022-12-30T10:54:29Z) - Siamese Transition Masked Autoencoders as Uniform Unsupervised Visual
Anomaly Detector [4.33060257697635]
This paper proposes a novel framework termed Siamese Transition Masked Autoencoders(ST-MAE) to handle various visual anomaly detection tasks uniformly.
Our deep feature transition scheme yields a nonsupervised and semantic self-supervisory task to extract normal patterns.
arXiv Detail & Related papers (2022-11-01T09:45:49Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - Decoupled Multi-task Learning with Cyclical Self-Regulation for Face
Parsing [71.19528222206088]
We propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation for face parsing.
Specifically, DML-CSR designs a multi-task model which comprises face parsing, binary edge, and category edge detection.
Our method achieves the new state-of-the-art performance on the Helen, CelebA-HQ, and LapaMask datasets.
arXiv Detail & Related papers (2022-03-28T02:12:30Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.