Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space
- URL: http://arxiv.org/abs/2207.09185v3
- Date: Tue, 22 Oct 2024 08:17:21 GMT
- Title: Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space
- Authors: Alejandro Guerrero-López, Carlos Sevilla-Salcedo, Vanessa Gómez-Verdejo, Pablo M. Olmos,
- Abstract summary: This study proposes a novel method to address limitations by combining Variational AutoEncoders (VAEs) with a Factor Analysis latent space (FA-VAE)
The proposed FA-VAE method employs multiple VAEs to learn a private representation for each heterogeneous data view in a continuous latent space.
- Score: 45.418113011182186
- License:
- Abstract: Purpose: Handling heterogeneous and mixed data types has become increasingly critical with the exponential growth in real-world databases. While deep generative models attempt to merge diverse data views into a common latent space, they often sacrifice interpretability, flexibility, and modularity. This study proposes a novel method to address these limitations by combining Variational AutoEncoders (VAEs) with a Factor Analysis latent space (FA-VAE). Methods: The proposed FA-VAE method employs multiple VAEs to learn a private representation for each heterogeneous data view in a continuous latent space. Information is shared between views using a low-dimensional latent space, generated via a linear projection matrix. This modular design creates a hierarchical dependency between private and shared latent spaces, allowing for the flexible addition of new views and conditioning of pre-trained models. Results: The FA-VAE approach facilitates cross-generation of data from different domains and enables transfer learning between generative models. This allows for effective integration of information across diverse data views while preserving their distinct characteristics. Conclusions: By overcoming the limitations of existing methods, the FA-VAE provides a more interpretable, flexible, and modular solution for managing heterogeneous data types. It offers a pathway to more efficient and scalable data-handling strategies, enhancing the potential for cross-domain data synthesis and model transferability.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
We develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information.
We demonstrate its ability to unveil a variety of patterns in a social support network among villagers in rural India.
arXiv Detail & Related papers (2024-05-31T15:21:59Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Encoding Domain Knowledge in Multi-view Latent Variable Models: A
Bayesian Approach with Structured Sparsity [7.811916700683125]
MuVI is a novel approach for domain-informed multi-view latent variable models.
We demonstrate that our model is able to integrate noisy domain expertise in form of feature sets.
arXiv Detail & Related papers (2022-04-13T08:22:31Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across heterogeneous views.
With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, but also increases the model flexibility with the distribution-based regularization.
arXiv Detail & Related papers (2022-03-15T02:50:07Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.