Riemannian Stochastic Gradient Method for Nested Composition Optimization
- URL: http://arxiv.org/abs/2207.09350v2
- Date: Tue, 19 Mar 2024 05:33:55 GMT
- Title: Riemannian Stochastic Gradient Method for Nested Composition Optimization
- Authors: Dewei Zhang, Sam Davanloo Tajbakhsh,
- Abstract summary: This work considers optimization of composition of functions in a nested form over Riemannian where each function contains an expectation.
This type of problems is gaining popularity in applications such as policy evaluation in reinforcement learning or model customization in metalearning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work considers optimization of composition of functions in a nested form over Riemannian manifolds where each function contains an expectation. This type of problems is gaining popularity in applications such as policy evaluation in reinforcement learning or model customization in meta-learning. The standard Riemannian stochastic gradient methods for non-compositional optimization cannot be directly applied as stochastic approximation of inner functions create bias in the gradients of the outer functions. For two-level composition optimization, we present a Riemannian Stochastic Composition Gradient Descent (R-SCGD) method that finds an approximate stationary point, with expected squared Riemannian gradient smaller than $\epsilon$, in $O(\epsilon^{-2})$ calls to the stochastic gradient oracle of the outer function and stochastic function and gradient oracles of the inner function. Furthermore, we generalize the R-SCGD algorithms for problems with multi-level nested compositional structures, with the same complexity of $O(\epsilon^{-2})$ for the first-order stochastic oracle. Finally, the performance of the R-SCGD method is numerically evaluated over a policy evaluation problem in reinforcement learning.
Related papers
- Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
Non-smooth non optimization problems emerge in machine learning and business making.
Two core challenges impede the development of efficient methods with finitetime convergence guarantee.
Two-phase versions of GFM and SGFM are also proposed and proven to achieve improved large-deviation results.
arXiv Detail & Related papers (2022-09-12T06:53:24Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Stochastic Zeroth order Descent with Structured Directions [10.604744518360464]
We introduce and analyze Structured Zeroth order Descent (SSZD), a finite difference approach that approximates a gradient on a set $lleq d directions, where $d is the dimension of the ambient space.
For convex convex we prove almost sure convergence of functions on $O( (d/l) k-c1/2$)$ for every $c1/2$, which is arbitrarily close to the one of the Gradient Descent (SGD) in terms of one number of iterations.
arXiv Detail & Related papers (2022-06-10T14:00:06Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions [15.33098084159285]
This paper addresses the problem of optimizing partition functions in a learning setting.
We propose a variant of the bound majorization algorithm that relies on upper-bounding the partition function with a quadratic surrogate.
arXiv Detail & Related papers (2020-11-03T04:42:51Z) - Riemannian Stochastic Proximal Gradient Methods for Nonsmooth
Optimization over the Stiefel Manifold [7.257751371276488]
R-ProxSGD and R-ProxSPB are generalizations of proximal SGD and proximal SpiderBoost.
R-ProxSPB algorithm finds an $epsilon$-stationary point with $O(epsilon-3)$ IFOs in the online case, and $O(n+sqrtnepsilon-3)$ IFOs in the finite-sum case.
arXiv Detail & Related papers (2020-05-03T23:41:35Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z) - Stochastic Recursive Variance Reduction for Efficient Smooth Non-Convex
Compositional Optimization [20.410012564838933]
compositional optimization arises in many important machine learning tasks such as value function evaluation in reinforcement learning and portfolio management.
In this paper, we investigate the general compositional optimization in the general smooth non-cursive setting.
arXiv Detail & Related papers (2019-12-31T18:59:13Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.