Digital Twin-based Intrusion Detection for Industrial Control Systems
- URL: http://arxiv.org/abs/2207.09999v1
- Date: Wed, 20 Jul 2022 16:03:10 GMT
- Title: Digital Twin-based Intrusion Detection for Industrial Control Systems
- Authors: Seba Anna Varghese and Alireza Dehlaghi Ghadim and Ali Balador and
Zahra Alimadadi and Panos Papadimitratos
- Abstract summary: This study contributes to a digital twin-based security framework for industrial control systems.
Four types of process-aware attack scenarios are implemented on a standalone open-source digital twin of an industrial filling plant.
A stacked ensemble is proposed as the real-time intrusion detection, based on the offline evaluation of eight supervised machine learning algorithms.
- Score: 0.5459797813771499
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Digital twins have recently gained significant interest in simulation,
optimization, and predictive maintenance of Industrial Control Systems (ICS).
Recent studies discuss the possibility of using digital twins for intrusion
detection in industrial systems. Accordingly, this study contributes to a
digital twin-based security framework for industrial control systems, extending
its capabilities for simulation of attacks and defense mechanisms. Four types
of process-aware attack scenarios are implemented on a standalone open-source
digital twin of an industrial filling plant: command injection, network Denial
of Service (DoS), calculated measurement modification, and naive measurement
modification. A stacked ensemble classifier is proposed as the real-time
intrusion detection, based on the offline evaluation of eight supervised
machine learning algorithms. The designed stacked model outperforms previous
methods in terms of F1-Score and accuracy, by combining the predictions of
various algorithms, while it can detect and classify intrusions in near
real-time (0.1 seconds). This study also discusses the practicality and
benefits of the proposed digital twin-based security framework.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
GenAI can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry.
The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT.
arXiv Detail & Related papers (2023-11-21T18:02:52Z) - A digital twin framework for civil engineering structures [0.6249768559720122]
The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms.
This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures.
arXiv Detail & Related papers (2023-08-02T21:38:36Z) - Probabilistic machine learning based predictive and interpretable
digital twin for dynamical systems [0.0]
Two approaches for updating the digital twin are proposed.
In both cases, the resulting expressions of updated digital twins are identical.
The proposed approaches provide an exact and explainable description of the perturbations in digital twin models.
arXiv Detail & Related papers (2022-12-19T04:25:59Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Man, machine and work in a digital twin setup: a case study [77.34726150561087]
A digital twin as a virtual counterpart of a physical human-robot assembly system is built as a front-runner for validation and control through design, build, and operation.
The forms of digital twins along the system life cycle, the building blocks, and potential advantages are presented.
arXiv Detail & Related papers (2020-06-15T20:54:43Z) - Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation [1.8275108630751844]
We identify vulnerabilities in real-world industrial control systems (ICS) using evolutionary multiobjective optimisation (EMO) algorithms.
Our approach is evaluated on a benchmark chemical plant simulator, the Tennessee Eastman (TE) process model.
A defence against these attacks in the form of a novel intrusion detection system was developed.
arXiv Detail & Related papers (2020-05-27T00:22:48Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
Digital twin technology has significant promise, relevance and potential of widespread applicability.
Digital twins are expected to exploit data and computational methods.
We have explored the possibility of using surrogate models within the digital twin technology.
arXiv Detail & Related papers (2020-01-25T10:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.