Real-Time Elderly Monitoring for Senior Safety by Lightweight Human
Action Recognition
- URL: http://arxiv.org/abs/2207.10519v1
- Date: Thu, 21 Jul 2022 15:00:54 GMT
- Title: Real-Time Elderly Monitoring for Senior Safety by Lightweight Human
Action Recognition
- Authors: Han Sun, Yu Chen
- Abstract summary: Real-time monitoring and action recognition essential to raise an alert timely when abnormal behaviors or unusual activities occur.
We propose a novel Real-time Elderly Monitoring for senior Safety (REMS) based on lightweight human action recognition (HAR) technology.
- Score: 11.178325140443446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With an increasing number of elders living alone, care-giving from a distance
becomes a compelling need, particularly for safety. Real-time monitoring and
action recognition are essential to raise an alert timely when abnormal
behaviors or unusual activities occur. While wearable sensors are widely
recognized as a promising solution, highly depending on user's ability and
willingness makes them inefficient. In contrast, video streams collected
through non-contact optical cameras provide richer information and release the
burden on elders. In this paper, leveraging the Independently-Recurrent neural
Network (IndRNN) we propose a novel Real-time Elderly Monitoring for senior
Safety (REMS) based on lightweight human action recognition (HAR) technology.
Using captured skeleton images, the REMS scheme is able to recognize abnormal
behaviors or actions and preserve the user's privacy. To achieve high accuracy,
the HAR module is trained and fine-tuned using multiple databases. An extensive
experimental study verified that REMS system performs action recognition
accurately and timely. REMS meets the design goals as a privacy-preserving
elderly safety monitoring system and possesses the potential to be adopted in
various smart monitoring systems.
Related papers
- Differentially Private Integrated Decision Gradients (IDG-DP) for Radar-based Human Activity Recognition [5.955900146668931]
Recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns.
This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems.
We propose a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm.
arXiv Detail & Related papers (2024-11-04T14:08:26Z) - Millimeter Wave Radar-based Human Activity Recognition for Healthcare Monitoring Robot [8.98784164617929]
We propose RobHAR, a movable robot-mounted mmWave radar system for real-time monitoring of human activities.
We first propose a sparse point cloud-based global embedding to learn the features of point clouds.
Then, we learn the temporal pattern with a bidirectional lightweight LSTM model (BiLiLSTM)
arXiv Detail & Related papers (2024-05-03T06:57:59Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - MISO: Monitoring Inactivity of Single Older Adults at Home using RGB-D Technology [5.612499701087411]
A new application for real-time monitoring of the lack of movement in older adults' own homes is proposed.
A lightweight camera monitoring system was developed and piloted in community homes to observe the daily behavior of older adults.
arXiv Detail & Related papers (2023-11-03T21:51:33Z) - In-vehicle alertness monitoring for older adults [63.359033532099204]
We present a system for in-vehicle alertness monitoring for older adults.
We implemented a prototype traveler monitoring system and evaluated the alertness detection algorithm on ten older adults (70 years and older.
This study is the first of its kind for a hitherto under-studied population and has implications for future work on algorithm development and system design through participatory methods.
arXiv Detail & Related papers (2022-08-17T06:07:37Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
We propose a human activity recognition (HAR) approach for the online prediction of physical movements.
We develop a HAR system containing monitoring software and a mobile application that collects accelerometer and gyroscope data.
Six incremental learning algorithms are employed and evaluated in this work and compared with several batch learning algorithms commonly used for developing offline HAR systems.
arXiv Detail & Related papers (2021-09-20T11:33:09Z) - In-Bed Person Monitoring Using Thermal Infrared Sensors [53.561797148529664]
We use 'Griddy', a prototype with a Panasonic Grid-EYE, a low-resolution infrared thermopile array sensor, which offers more privacy.
For this purpose, two datasets were captured, one (480 images) under constant conditions, and a second one (200 images) under different variations.
We test three machine learning algorithms: Support Vector Machines (SVM), k-Nearest Neighbors (k-NN) and Neural Network (NN)
arXiv Detail & Related papers (2021-07-16T15:59:07Z) - Aurora Guard: Reliable Face Anti-Spoofing via Mobile Lighting System [103.5604680001633]
Anti-spoofing against high-resolution rendering replay of paper photos or digital videos remains an open problem.
We propose a simple yet effective face anti-spoofing system, termed Aurora Guard (AG)
arXiv Detail & Related papers (2021-02-01T09:17:18Z) - An Intelligent Non-Invasive Real Time Human Activity Recognition System
for Next-Generation Healthcare [9.793913891417912]
Human motion can be used to provide remote healthcare solutions for vulnerable people.
At present wearable devices can provide real time monitoring by deploying equipment on a person's body.
This paper demonstrates how human motions can be detected in quasi-real-time scenario using a non-invasive method.
arXiv Detail & Related papers (2020-08-06T10:51:56Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.