An advanced combination of semi-supervised Normalizing Flow & Yolo
(YoloNF) to detect and recognize vehicle license plates
- URL: http://arxiv.org/abs/2207.10777v1
- Date: Thu, 21 Jul 2022 22:22:57 GMT
- Title: An advanced combination of semi-supervised Normalizing Flow & Yolo
(YoloNF) to detect and recognize vehicle license plates
- Authors: Khalid Oublal and Xinyi Dai
- Abstract summary: This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detector and Normalizing flows.
The model uses two new strategies. Firstly, a two-stage network using YOLO and a normalization flow-based model for normalization to detect Licenses Plates (LP) and recognize the LP with numbers and Arabic characters.
- Score: 1.5208105446192792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fully Automatic License Plate Recognition (ALPR) has been a frequent research
topic due to several practical applications. However, many of the current
solutions are still not robust enough in real situations, commonly depending on
many constraints. This paper presents a robust and efficient ALPR system based
on the state-of-the-art YOLO object detector and Normalizing flows. The model
uses two new strategies. Firstly, a two-stage network using YOLO and a
normalization flow-based model for normalization to detect Licenses Plates (LP)
and recognize the LP with numbers and Arabic characters. Secondly, Multi-scale
image transformations are implemented to provide a solution to the problem of
the YOLO cropped LP detection including significant background noise.
Furthermore, extensive experiments are led on a new dataset with realistic
scenarios, we introduce a larger public annotated dataset collected from
Moroccan plates. We demonstrate that our proposed model can learn on a small
number of samples free of single or multiple characters. The dataset will also
be made publicly available to encourage further studies and research on plate
detection and recognition.
Related papers
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - A Training-Free Framework for Video License Plate Tracking and Recognition with Only One-Shot [25.032455444204466]
OneShotLP is a training-free framework for video-based license plate detection and recognition.
It offers the ability to function effectively without extensive training data and adaptability to various license plate styles.
This highlights the potential of leveraging pre-trained models for diverse real-world applications in intelligent transportation systems.
arXiv Detail & Related papers (2024-08-11T08:42:02Z) - A Dataset and Model for Realistic License Plate Deblurring [17.52035404373648]
We introduce the first large-scale license plate deblurring dataset named License Plate Blur (LPBlur)
Then, we propose a License Plate Deblurring Generative Adversarial Network (LPDGAN) to tackle the license plate deblurring.
Our proposed model outperforms other state-of-the-art motion deblurring methods in realistic license plate deblurring scenarios.
arXiv Detail & Related papers (2024-04-21T14:36:57Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Logit Normalization for Long-tail Object Detection [32.18963619434191]
Real-world data exhibiting skewed distributions pose a serious challenge to existing object detectors.
We propose Logit Normalization (LogN), a technique to self-calibrate the classified logits of detectors in a similar way to batch normalization.
In general, our LogN is training- and tuning-free (i.e. require no extra training and tuning process), model- and label distribution-agnostic, and also plug-and-play.
arXiv Detail & Related papers (2022-03-31T13:28:51Z) - End-to-End High Accuracy License Plate Recognition Based on Depthwise
Separable Convolution Networks [0.0]
We propose a novel segmentation-free framework for license plate recognition and introduce NP-ALPR dataset.
The proposed network model consists of the latest deep learning methods and state-of-the-art ideas, and benefits from a novel network architecture.
We evaluate the effectiveness of the proposed method on three different datasets and show a recognition accuracy of over 99% and over 70 fps.
arXiv Detail & Related papers (2022-02-21T14:45:03Z) - On the Cross-dataset Generalization in License Plate Recognition [1.8514314381314887]
We propose a traditional-split versus leave-one-dataset-out experimental setup to empirically assess the cross-dataset generalization of 12 OCR models.
Results shed light on the limitations of the traditional-split protocol for evaluating approaches in the ALPR context.
arXiv Detail & Related papers (2022-01-02T00:56:09Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.