Robust Knowledge Adaptation for Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2207.10839v2
- Date: Thu, 11 Apr 2024 05:46:09 GMT
- Title: Robust Knowledge Adaptation for Dynamic Graph Neural Networks
- Authors: Hanjie Li, Changsheng Li, Kaituo Feng, Ye Yuan, Guoren Wang, Hongyuan Zha,
- Abstract summary: We propose Ada-DyGNN: a robust knowledge Adaptation framework via reinforcement learning for Dynamic Graph Neural Networks.
Our approach constitutes the first attempt to explore robust knowledge adaptation via reinforcement learning.
Experiments on three benchmark datasets demonstrate that Ada-DyGNN achieves the state-of-the-art performance.
- Score: 61.8505228728726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph structured data often possess dynamic characters in nature. Recent years have witnessed the increasing attentions paid to dynamic graph neural networks for modelling graph data. However, almost all existing approaches operate under the assumption that, upon the establishment of a new link, the embeddings of the neighboring nodes should undergo updates to learn temporal dynamics. Nevertheless, these approaches face the following limitation: If the node introduced by a new connection contains noisy information, propagating its knowledge to other nodes becomes unreliable and may even lead to the collapse of the model. In this paper, we propose Ada-DyGNN: a robust knowledge Adaptation framework via reinforcement learning for Dynamic Graph Neural Networks. In contrast to previous approaches, which update the embeddings of the neighbor nodes immediately after adding a new link, Ada-DyGNN adaptively determines which nodes should be updated. Considering that the decision to update the embedding of one neighbor node can significantly impact other neighbor nodes, we conceptualize the node update selection as a sequence decision problem and employ reinforcement learning to address it effectively. By this means, we can adaptively propagate knowledge to other nodes for learning robust node embedding representations. To the best of our knowledge, our approach constitutes the first attempt to explore robust knowledge adaptation via reinforcement learning specifically tailored for dynamic graph neural networks. Extensive experiments on three benchmark datasets demonstrate that Ada-DyGNN achieves the state-of-the-art performance. In addition, we conduct experiments by introducing different degrees of noise into the dataset, quantitatively and qualitatively illustrating the robustness of Ada-DyGNN.
Related papers
- Global Context Enhanced Anomaly Detection of Cyber Attacks via Decoupled Graph Neural Networks [0.0]
We deploy decoupled GNNs to overcome the issue of capturing nonlinear network information.
For node representation learning, we develop a GNN architecture with two modules for aggregating node feature information.
The findings demonstrate that decoupled training along with the global context enhanced representation of the nodes is superior to the state-of-the-art models in terms of AUC.
arXiv Detail & Related papers (2024-09-04T21:54:07Z) - Dynamic Link Prediction for New Nodes in Temporal Graph Networks [6.13245948813717]
Modelling temporal networks for dynamic link prediction of new nodes has many real-world applications.
New nodes have few historical links, which poses a challenge for the dynamic link prediction task.
Most existing dynamic models treat all nodes equally and are not specialized for new nodes, resulting in suboptimal performances.
arXiv Detail & Related papers (2023-10-15T09:54:18Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Streaming Graph Neural Networks via Continual Learning [31.810308087441445]
Graph neural networks (GNNs) have achieved strong performance in various applications.
In this paper, we propose a streaming GNN model based on continual learning.
We show that our model can efficiently update model parameters and achieve comparable performance to model retraining.
arXiv Detail & Related papers (2020-09-23T06:52:30Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - GRADE: Graph Dynamic Embedding [76.85156209917932]
GRADE is a probabilistic model that learns to generate evolving node and community representations by imposing a random walk prior to their trajectories.
Our model also learns node community membership which is updated between time steps via a transition matrix.
Experiments demonstrate GRADE outperforms baselines in dynamic link prediction, shows favourable performance on dynamic community detection, and identifies coherent and interpretable evolving communities.
arXiv Detail & Related papers (2020-07-16T01:17:24Z) - Temporal Network Representation Learning via Historical Neighborhoods
Aggregation [28.397309507168128]
We propose the Embedding via Historical Neighborhoods Aggregation (EHNA) algorithm.
We first propose a temporal random walk that can identify relevant nodes in historical neighborhoods.
Then we apply a deep learning model which uses a custom attention mechanism to induce node embeddings.
arXiv Detail & Related papers (2020-03-30T04:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.