Graph Spatio-Spectral Total Variation Model for Hyperspectral Image
Denoising
- URL: http://arxiv.org/abs/2207.11050v1
- Date: Fri, 22 Jul 2022 12:46:21 GMT
- Title: Graph Spatio-Spectral Total Variation Model for Hyperspectral Image
Denoising
- Authors: Shingo Takemoto, Kazuki Naganuma, and Shunsuke Ono
- Abstract summary: We propose a new TV-type regularization called Graph-SSTV (GSSTV) for mixed noise removal.
GSSTV generates a graph explicitly reflecting the spatial structure of the target HSI from noisy HSIs and incorporates a weighted spatial difference operator based on this graph.
We demonstrate the effectiveness of GSSTV compared with existing HSI regularization models through experiments on mixed noise removal.
- Score: 16.562236225580513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spatio-spectral total variation (SSTV) model has been widely used as an
effective regularization of hyperspectral images (HSI) for various applications
such as mixed noise removal. However, since SSTV computes local spatial
differences uniformly, it is difficult to remove noise while preserving complex
spatial structures with fine edges and textures, especially in situations of
high noise intensity. To solve this problem, we propose a new TV-type
regularization called Graph-SSTV (GSSTV), which generates a graph explicitly
reflecting the spatial structure of the target HSI from noisy HSIs and
incorporates a weighted spatial difference operator designed based on this
graph. Furthermore, we formulate the mixed noise removal problem as a convex
optimization problem involving GSSTV and develop an efficient algorithm based
on the primal-dual splitting method to solve this problem. Finally, we
demonstrate the effectiveness of GSSTV compared with existing HSI
regularization models through experiments on mixed noise removal. The source
code will be available at https://www.mdi.c.titech.ac.jp/publications/gsstv.
Related papers
- Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
Low-rank tensor representation is an important approach to alleviate spectral variations.
Previous low-rank representation methods can only be applied to the regular data cubes.
We propose a novel irregular lowrank representation method that can efficiently model the irregular 3D cubes.
arXiv Detail & Related papers (2024-10-24T02:56:22Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
We introduce a self-modulating convolutional neural network which utilizes correlated spectral and spatial information.
At the core of the model lies a novel block, which allows the network to transform the features in an adaptive manner based on the adjacent spectral data.
Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods.
arXiv Detail & Related papers (2023-09-15T06:57:43Z) - Weighted structure tensor total variation for image denoising [0.5120567378386615]
For image denoising problems, the structure tensor total variation (STV)-based models show good performances when compared with other competing regularization approaches.
We employ the anisotropic weighted matrix introduced in the anisotropic total variation (ATV) model to improve the STV model.
Our proposed weighted STV model can effectively capture local information from images and maintain their details during the denoising process.
arXiv Detail & Related papers (2023-06-18T05:37:38Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Spatial-Spectral Transformer for Hyperspectral Image Denoising [31.86587556847128]
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure for the subsequent HSI applications.
Existing convolution-based methods face the trade-off between computational efficiency and capability to model non-local characteristics of HSI.
We propose a Spatial-Spectral Transformer (SST) to alleviate this problem.
arXiv Detail & Related papers (2022-11-25T13:18:45Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z) - Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector
Tensor Factorization [42.56231647066719]
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information.
During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes.
We present a HSI restoration method named smooth and robust low rank tensor recovery.
arXiv Detail & Related papers (2020-06-29T02:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.