Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs
- URL: http://arxiv.org/abs/2207.11102v1
- Date: Fri, 22 Jul 2022 14:22:22 GMT
- Title: Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs
- Authors: Martin J. Menten, Johannes C. Paetzold, Alina Dima, Bjoern H. Menze,
Benjamin Knier, Daniel Rueckert
- Abstract summary: We present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels.
Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal plexuses and 2) a suite of physics-based image augmentations.
- Score: 8.596819713822477
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical coherence tomography angiography (OCTA) can non-invasively image the
eye's circulatory system. In order to reliably characterize the retinal
vasculature, there is a need to automatically extract quantitative metrics from
these images. The calculation of such biomarkers requires a precise semantic
segmentation of the blood vessels. However, deep-learning-based methods for
segmentation mostly rely on supervised training with voxel-level annotations,
which are costly to obtain. In this work, we present a pipeline to synthesize
large amounts of realistic OCTA images with intrinsically matching ground truth
labels; thereby obviating the need for manual annotation of training data. Our
proposed method is based on two novel components: 1) a physiology-based
simulation that models the various retinal vascular plexuses and 2) a suite of
physics-based image augmentations that emulate the OCTA image acquisition
process including typical artifacts. In extensive benchmarking experiments, we
demonstrate the utility of our synthetic data by successfully training retinal
vessel segmentation algorithms. Encouraged by our method's competitive
quantitative and superior qualitative performance, we believe that it
constitutes a versatile tool to advance the quantitative analysis of OCTA
images.
Related papers
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
This study demonstrates a synthesis engine for neurovascular segmentation in serial-section optical coherence tomography images.
Our approach comprises two phases: label synthesis and label-to-image transformation.
We demonstrate the efficacy of the former by comparing it to several more realistic sets of training labels, and the latter by an ablation study of synthetic noise and artifact models.
arXiv Detail & Related papers (2024-07-01T16:09:07Z) - A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
Serial sectioning Optical Coherence Tomography (s OCT) is becoming increasingly popular to study post-mortem neurovasculature.
Here, we leverage synthetic datasets of vessels to train a deep learning segmentation model.
Both approaches yield similar Dice scores, although with very different false positive and false negative rates.
arXiv Detail & Related papers (2024-05-22T15:39:31Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
We propose an image synthesis method that utilizes denoising diffusion probabilistic models (DDPMs) to automatically generate retinal optical coherence tomography ( OCT) images.
We observe a consistent improvement in layer segmentation accuracy, which is validated using various neural networks.
These findings demonstrate the promising potential of DDPMs in reducing the need for manual annotations of retinal OCT images.
arXiv Detail & Related papers (2023-11-09T16:09:24Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - SYNTA: A novel approach for deep learning-based image analysis in muscle
histopathology using photo-realistic synthetic data [2.1616289178832666]
We introduce SYNTA (synthetic data) as a novel approach for the generation of synthetic, photo-realistic, and highly complex biomedical images as training data.
We demonstrate that it is possible to perform robust and expert-level segmentation tasks on previously unseen real-world data, without the need for manual annotations.
arXiv Detail & Related papers (2022-07-29T12:50:32Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.