Can we achieve robustness from data alone?
- URL: http://arxiv.org/abs/2207.11727v1
- Date: Sun, 24 Jul 2022 12:14:48 GMT
- Title: Can we achieve robustness from data alone?
- Authors: Nikolaos Tsilivis, Jingtong Su, Julia Kempe
- Abstract summary: Adversarial training and its variants have come to be the prevailing methods to achieve adversarially robust classification using neural networks.
We devise a meta-learning method for robust classification, that optimize the dataset prior to its deployment in a principled way.
Experiments on MNIST and CIFAR-10 demonstrate that the datasets we produce enjoy very high robustness against PGD attacks.
- Score: 0.7366405857677227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training and its variants have come to be the prevailing methods
to achieve adversarially robust classification using neural networks. However,
its increased computational cost together with the significant gap between
standard and robust performance hinder progress and beg the question of whether
we can do better. In this work, we take a step back and ask: Can models achieve
robustness via standard training on a suitably optimized set? To this end, we
devise a meta-learning method for robust classification, that optimizes the
dataset prior to its deployment in a principled way, and aims to effectively
remove the non-robust parts of the data. We cast our optimization method as a
multi-step PGD procedure on kernel regression, with a class of kernels that
describe infinitely wide neural nets (Neural Tangent Kernels - NTKs).
Experiments on MNIST and CIFAR-10 demonstrate that the datasets we produce
enjoy very high robustness against PGD attacks, when deployed in both kernel
regression classifiers and neural networks. However, this robustness is
somewhat fallacious, as alternative attacks manage to fool the models, which we
find to be the case for previous similar works in the literature as well. We
discuss potential reasons for this and outline further avenues of research.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - The Promises and Pitfalls of Deep Kernel Learning [13.487684503022063]
We identify pathological behavior, including overfitting, on a simple toy example.
We explore this pathology, explaining its origins and considering how it applies to real datasets.
We find that a fully Bayesian treatment of deep kernel learning can rectify this overfitting and obtain the desired performance improvements.
arXiv Detail & Related papers (2021-02-24T07:56:49Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.