A Reference Data Model for Process-Related User Interaction Logs
- URL: http://arxiv.org/abs/2207.12054v1
- Date: Mon, 25 Jul 2022 10:47:47 GMT
- Title: A Reference Data Model for Process-Related User Interaction Logs
- Authors: Luka Abb, Jana-Rebecca Rehse
- Abstract summary: We propose a universally applicable reference data model for process-related UI logs.
This model includes the core attributes of UI logs, but remains flexible with regard to the scope, level of abstraction, and case notion.
We provide an implementation of the model as an extension to the XES interchange standard for event logs and demonstrate its practical applicability in a real-life scenario.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User interaction (UI) logs are high-resolution event logs that record
low-level activities performed by a user during the execution of a task in an
information system. Each event in a UI log corresponds to a single interaction
between the user and the interface, such as clicking a button or entering a
string into a text field. UI logs are used for purposes like task mining or
robotic process automation (RPA), but each study and tool relies on a different
conceptualization and implementation of the elements and attributes that
constitute user interactions. This lack of standardization makes it difficult
to integrate UI logs from different sources and to combine tools for UI data
collection with downstream analytics or automation solutions. To address this,
we propose a universally applicable reference data model for process-related UI
logs. Based on a review of scientific literature and industry solutions, this
model includes the core attributes of UI logs, but remains flexible with regard
to the scope, level of abstraction, and case notion. We provide an
implementation of the model as an extension to the XES interchange standard for
event logs and demonstrate its practical applicability in a real-life RPA
scenario.
Related papers
- ToolACE: Winning the Points of LLM Function Calling [139.07157814653638]
ToolACE is an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data.
We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard.
arXiv Detail & Related papers (2024-09-02T03:19:56Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - Interpreting User Requests in the Context of Natural Language Standing
Instructions [89.12540932734476]
We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains.
A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue.
arXiv Detail & Related papers (2023-11-16T11:19:26Z) - You Only Look at Screens: Multimodal Chain-of-Action Agents [37.118034745972956]
Auto-GUI is a multimodal solution that directly interacts with the interface.
We propose a chain-of-action technique to help the agent decide what action to execute.
We evaluate our approach on a new device-control benchmark AITW with 30$K$ unique instructions.
arXiv Detail & Related papers (2023-09-20T16:12:32Z) - Log Parsing Evaluation in the Era of Modern Software Systems [47.370291246632114]
We focus on one integral part of automated log analysis, log parsing, which is the prerequisite to deriving any insights from logs.
Our investigation reveals problematic aspects within the log parsing field, particularly its inefficiency in handling heterogeneous real-world logs.
We propose a tool, Logchimera, that enables estimating log parsing performance in industry contexts.
arXiv Detail & Related papers (2023-08-17T14:19:22Z) - LogAI: A Library for Log Analytics and Intelligence [27.889928073709516]
LogAI is a one-stop open source library for log analytics and intelligence.
It supports tasks such as log summarization, log clustering and log anomaly detection.
LogAI provides a unified model interface and provides popular time-series, statistical learning and deep learning models.
arXiv Detail & Related papers (2023-01-31T05:08:39Z) - Resolving Uncertain Case Identifiers in Interaction Logs: A User Study [0.4014524824655105]
We propose a neural network-based technique to determine a case notion for click data.
We validate its efficacy through a user study based on the segmented event log resulting from interaction data of a mobility sharing company.
arXiv Detail & Related papers (2022-11-21T16:13:04Z) - ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces [12.52699475631247]
We introduce a new pre-trained UI representation model called ActionBert.
Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components.
Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
arXiv Detail & Related papers (2020-12-22T20:49:52Z) - Task-Oriented Dialogue as Dataflow Synthesis [158.77123205487334]
We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph.
A dialogue agent maps each user utterance to a program that extends this graph.
We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people.
arXiv Detail & Related papers (2020-09-24T00:35:26Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.