Applying classical control techniques to quantum systems: entanglement
versus stability margin and other limitations
- URL: http://arxiv.org/abs/2207.12385v1
- Date: Mon, 25 Jul 2022 17:52:01 GMT
- Title: Applying classical control techniques to quantum systems: entanglement
versus stability margin and other limitations
- Authors: C.A. Weidner, S.G. Schirmer, F.C. Langbein, E.A. Jonckheere
- Abstract summary: Development of robust quantum control has been challenging.
There are numerous obstacles to applying classical robust control to quantum system.
It remains difficult to extract physical insight when classical robust control tools are applied to these systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Development of robust quantum control has been challenging and there are
numerous obstacles to applying classical robust control to quantum system
including bilinearity, marginal stability, state preparation errors, nonlinear
figures of merit. The requirement of marginal stability, while not satisfied
for closed quantum systems, can be satisfied for open quantum systems where
Lindbladian behavior leads to non-unitary evolution, and allows for nonzero
classical stability margins, but it remains difficult to extract physical
insight when classical robust control tools are applied to these systems. We
consider a straightforward example of the entanglement between two qubits
dissipatively coupled to a lossy cavity and analyze it using the classical
stability margin and structured perturbations. We attempt, where possible, to
extract physical insight from these analyses. Our aim is to highlight where
classical robust control can assist in the analysis of quantum systems and
identify areas where more work needs to be done to develop specific methods for
quantum robust control.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Controlling Many-Body Quantum Chaos: Bose-Hubbard systems [0.0]
This work develops a quantum control application of many-body quantum chaos for ultracold bosonic gases trapped in optical lattices.
In the technique known as targeting, instead of a hindrance to control, the instability becomes a resource.
Explicit applications to custom state preparation and stabilization of quantum many-body scars are presented in one- and two-dimensional lattices.
arXiv Detail & Related papers (2024-01-31T11:03:58Z) - Robust Quantum Control in Closed and Open Systems: Theory and Practice [0.0]
This survey is written for control theorists to provide a review of the current state of quantum control and outline the challenges faced in trying to apply modern robust control to quantum systems.
We present issues that arise when applying classical robust control theory to quantum systems, typical methods used by quantum physicists to explore such systems and their robustness, as well as a discussion of open problems to be addressed in the field.
arXiv Detail & Related papers (2023-12-30T18:08:43Z) - Convergence of bipartite open quantum systems stabilized by reservoir
engineering [0.0]
We study a generic family of Lindblad master equations modeling bipartite open quantum systems.
We apply our result to a Lindblad master equation proposed for the stabilization of so-called cat qubits.
arXiv Detail & Related papers (2023-11-16T17:34:36Z) - The Quantum Cartpole: A benchmark environment for non-linear
reinforcement learning [0.0]
We show how a trade-off between state estimation and controllability arises.
We demonstrate the feasibility of using transfer learning to develop a quantum control agent trained via reinforcement learning.
arXiv Detail & Related papers (2023-11-01T18:02:42Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z) - Robust Control Performance for Open Quantum Systems [0.0]
A formalism is developed to measure performance based on the transmission of a dynamic perturbation or initial state preparation error.
A difficulty arising from the singularity of the closed-loop Bloch equations for the quantum state is overcome by introducing the #-inversion lemma.
Additional difficulties occur when symmetry gives rise to multiple open-loop poles, which under symmetry-breaking unfold into single eigenvalues.
arXiv Detail & Related papers (2020-08-31T15:51:22Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.