Time Majority Voting, a PC-based EEG Classifier for Non-expert Users
- URL: http://arxiv.org/abs/2207.12662v1
- Date: Tue, 26 Jul 2022 05:43:54 GMT
- Title: Time Majority Voting, a PC-based EEG Classifier for Non-expert Users
- Authors: Guangyao Dou, Zheng Zhou, Xiaodong Qu
- Abstract summary: We created a PC-based machine learning technique to increase the participation of non-expert end-users.
In our experiment, TMV performed better than cutting-edge algorithms.
- Score: 3.335856430410638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using Machine Learning and Deep Learning to predict cognitive tasks from
electroencephalography (EEG) signals is a rapidly advancing field in
Brain-Computer Interfaces (BCI). In contrast to the fields of computer vision
and natural language processing, the data amount of these trials is still
rather tiny. Developing a PC-based machine learning technique to increase the
participation of non-expert end-users could help solve this data collection
issue. We created a novel algorithm for machine learning called Time Majority
Voting (TMV). In our experiment, TMV performed better than cutting-edge
algorithms. It can operate efficiently on personal computers for classification
tasks involving the BCI. These interpretable data also assisted end-users and
researchers in comprehending EEG tests better.
Related papers
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
This survey focuses on the benefits of scaling compute during inference.
We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation.
arXiv Detail & Related papers (2024-06-24T17:45:59Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - An embedding for EEG signals learned using a triplet loss [0.0]
In a brain-computer interface (BCI), decoded brain state information can be used with minimal time delay.
A challenge in such decoding tasks is posed by the small dataset sizes.
We propose novel domain-specific embeddings for neurophysiological data.
arXiv Detail & Related papers (2023-03-23T09:05:20Z) - EEG4Students: An Experimental Design for EEG Data Collection and Machine
Learning Analysis [3.8224226881450187]
This paper explores machine learning algorithms that can run efficiently on personal computers for BCI classification tasks.
We investigate how to conduct such BCI experiments using affordable consumer-grade devices to collect EEG-based BCI data.
We have developed the data collection protocol, EEG4Students, that grants non-experts who are interested in a guideline for such data collection.
arXiv Detail & Related papers (2022-08-24T19:10:11Z) - BrainActivity1: A Framework of EEG Data Collection and Machine Learning
Analysis for College Students [3.335856430410638]
During the COVID-19 pandemic, data collection and analysis could be more challenging than before.
This paper explored machine learning algorithms that can run efficiently on personal computers for BCI classification tasks.
The results showed that Random Forest and RBF SVM performed well for EEG classification tasks.
arXiv Detail & Related papers (2022-07-27T01:48:00Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
We present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks.
We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal.
For a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines.
arXiv Detail & Related papers (2021-02-17T09:44:21Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.