Wave manipulation via delay-engineered periodic potentials
- URL: http://arxiv.org/abs/2207.13474v1
- Date: Wed, 27 Jul 2022 11:45:32 GMT
- Title: Wave manipulation via delay-engineered periodic potentials
- Authors: Alessandro Alberucci and Chandroth P. Jisha and Monika Monika and Ulf
Peschel and Stefan Nolte
- Abstract summary: We discuss the semi-classical transverse trapping of waves by means of an inhomogeneous gauge field.
We show that, due to the Kapitza effect, an effective potential proportional to the square of the transverse derivative of the delay arises.
- Score: 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss the semi-classical transverse trapping of waves by means of an
inhomogeneous gauge field. In the proposed scheme a temporally-periodic
perturbation is shifted in time, the imparted delay being dependent on the
transverse direction. We show that, due to the Kapitza effect, an effective
potential proportional to the square of the transverse derivative of the delay
arises. On a more physical ground, the delay induces a transversely-varying
periodic force acting on the wave, in turn providing a phase delay owing to the
local modulation of the kinetic energy. Our results are quite generic and can
find application in several fields, ranging from cold atoms to optics:
accordingly, an experimental proof-of-principle is provided using an optical
set-up based upon fiber loops.
Related papers
- Wigner time delay and Hartman effect in quantum motion along deformed
Riemannian manifolds [0.0]
Elastic scattering of a wave can be quantified by a shift in the phase with respect to the incoming wave phase.
At moderate and high energies, however, classical and quantum time delays coincide.
arXiv Detail & Related papers (2024-02-07T10:39:39Z) - Sub-barrier recollisions and the three classes of tunneling time delays
in strong-field ionization [0.0]
We investigate the effects of sub-barrier recolliding on the time delay pattern at the tunnel exit.
We conclude that the interference of the direct and recolliding trajectories decreases the tunneling time delay at the exit.
arXiv Detail & Related papers (2022-08-23T13:11:21Z) - Time-domain Hong-Ou-Mandel interference of quasi-thermal fields and its
application in linear optical circuit characterization [48.7576911714538]
We show that the Doppler effect causes oscillations in temporal cross-correlation function.
We propose how to use Hong-Ou-Mandel interference of quasi-thermal fields in the time domain to characterize linear optical circuits.
arXiv Detail & Related papers (2022-05-14T19:34:23Z) - Wigner time delays and Goos-H\"{a}nchen shifts of 2D quantum vortices
scattered by potential barriers [0.0]
vortex-induced times delays and spatial shifts of 2D vortices are studied.
Time delays and shifts are resonantly enhanced in the vicinity of the critical angle formulae and near transmission resonances for a rectangular barrier.
arXiv Detail & Related papers (2022-04-04T03:10:31Z) - Speed-up and slow-down of a quantum particle [0.0]
We study non-relativistic propagation of Gaussian wave packets in one-dimensional Eckart potential, a barrier, or a well.
The properties of the amplitude distribution of the delays, and its pole representation are studied in detail.
arXiv Detail & Related papers (2022-03-08T14:00:22Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Gap-tunable of Tunneling Time in Graphene Magnetic Barrier [0.0]
We study the tunneling time of Dirac fermions in graphene magnetic barrier through an electrostatic potential and a mass term.
This latter generates an energy gap in the spectrum and therefore affects the proprieties of tunneling of the system.
arXiv Detail & Related papers (2021-03-30T18:16:39Z) - Propagating Wigner-Negative States Generated from the Steady-State
Emission of a Superconducting Qubit [52.332094293284904]
We generate Wigner-negative states from a superconducting qubit.
We observe a large Wigner logarithmic negativity, in excess of 0.08, in agreement with theory.
arXiv Detail & Related papers (2021-01-23T16:30:31Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.