Structural Similarity for Improved Transfer in Reinforcement Learning
- URL: http://arxiv.org/abs/2207.13813v1
- Date: Wed, 27 Jul 2022 22:21:38 GMT
- Title: Structural Similarity for Improved Transfer in Reinforcement Learning
- Authors: C. Chace Ashcraft, Benjamin Stoler, Chigozie Ewulum, Susama Agarwala
- Abstract summary: We present an algorithm that calculates a state similarity measure for states in two finite MDPs based on previously developed bisimulation metrics.
We show that the measure satisfies properties of a distance metric and can be used to improve transfer performance for Q-Learning agents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is an increasingly common approach for developing
performant RL agents. However, it is not well understood how to define the
relationship between the source and target tasks, and how this relationship
contributes to successful transfer. We present an algorithm called Structural
Similarity for Two MDPS, or SS2, that calculates a state similarity measure for
states in two finite MDPs based on previously developed bisimulation metrics,
and show that the measure satisfies properties of a distance metric. Then,
through empirical results with GridWorld navigation tasks, we provide evidence
that the distance measure can be used to improve transfer performance for
Q-Learning agents over previous implementations.
Related papers
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
We propose a brand-new Deep Boosting Learning (DBL) algorithm for image-text matching.
An anchor branch is first trained to provide insights into the data properties.
A target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples.
arXiv Detail & Related papers (2024-04-28T08:44:28Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
We propose HASTE, a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data.
We show that HASTE can be used with any existing transferability metric to improve their reliability.
Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
arXiv Detail & Related papers (2023-01-17T14:50:18Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task.
Recent works showed that an expert-guided pipeline relying on Density Estimation methods effectively detects this structure in deterministic environments.
We show that the former results lead to a performance improvement when solving the learned MDP and then applying the optimized policy in the real environment.
arXiv Detail & Related papers (2021-12-18T14:32:32Z) - PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense
Passage Retrieval [87.68667887072324]
We propose a novel approach that leverages query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval.
To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations.
Our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
arXiv Detail & Related papers (2021-08-13T02:07:43Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - A Taxonomy of Similarity Metrics for Markov Decision Processes [62.997667081978825]
In recent years, transfer learning has succeeded in making Reinforcement Learning (RL) algorithms more efficient.
In this paper, we propose a categorization of these metrics and analyze the definitions of similarity proposed so far.
arXiv Detail & Related papers (2021-03-08T12:36:42Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - DEPARA: Deep Attribution Graph for Deep Knowledge Transferability [91.06106524522237]
We propose the DEeP Attribution gRAph (DEPARA) to investigate the transferability of knowledge learned from PR-DNNs.
In DEPARA, nodes correspond to the inputs and are represented by their vectorized attribution maps with regards to the outputs of the PR-DNN.
The knowledge transferability of two PR-DNNs is measured by the similarity of their corresponding DEPARAs.
arXiv Detail & Related papers (2020-03-17T02:07:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.