Multi-Objective Provisioning of Network Slices using Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2207.13821v1
- Date: Wed, 27 Jul 2022 23:04:22 GMT
- Title: Multi-Objective Provisioning of Network Slices using Deep Reinforcement
Learning
- Authors: Chien-Cheng Wu, Vasilis Friderikos1, Cedomir Stefanovic
- Abstract summary: A real-time Network Slice Provisioning (NSP) problem is modeled as an online Multi-Objective Programming Optimization (MOIPO) problem.
We approximate the solution of the MOIPO problem by applying the Proximal Policy Optimization (PPO) method to the traffic demand prediction.
Our simulation results show the effectiveness of the proposed method compared to the state-of-the-art MOIPO solvers with a lower SLA violation rate and network operation cost.
- Score: 5.074839768784803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network Slicing (NS) is crucial for efficiently enabling divergent network
applications in next generation networks. Nonetheless, the complex Quality of
Service (QoS) requirements and diverse heterogeneity in network services
entails high computational time for Network Slice Provisioning (NSP)
optimization. The legacy optimization methods are challenging to meet the low
latency and high reliability of network applications. To this end, we model the
real-time NSP as an Online Network Slice Provisioning (ONSP) problem.
Specifically, we formulate the ONSP problem as an online Multi-Objective
Integer Programming Optimization (MOIPO) problem. Then, we approximate the
solution of the MOIPO problem by applying the Proximal Policy Optimization
(PPO) method to the traffic demand prediction. Our simulation results show the
effectiveness of the proposed method compared to the state-of-the-art MOIPO
solvers with a lower SLA violation rate and network operation cost.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
This paper introduces an innovative attention-based deep RL (ADRL) technique that leverages the O-RAN disaggregated modules and distributed agent cooperation.
Simulation results demonstrate significant improvements in network performance compared to other DRL baseline methods.
arXiv Detail & Related papers (2023-06-15T20:37:19Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
This paper focuses on the problem of scheduling inference queries on Deep Neural Networks in edge networks at short timescales.
By means of simulations, we analyze several policies in the realistic network settings and workloads of a large ISP.
We design ASET, a Reinforcement Learning based scheduling algorithm able to adapt its decisions according to the system conditions.
arXiv Detail & Related papers (2023-01-31T13:23:34Z) - Tactile Network Resource Allocation enabled by Quantum Annealing based
on ILP Modeling [0.0]
We propose a new framework for short-time network optimization based on quantum computing (QC) and integer linear program (ILP) models.
We map a nearly real-world ILP model for resource provisioning to a quadratic unconstrained binary optimization problem, which is solvable on quantum annealer (QA)
arXiv Detail & Related papers (2022-12-14T14:12:03Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.