Dive into Machine Learning Algorithms for Influenza Virus Host Prediction with Hemagglutinin Sequences
- URL: http://arxiv.org/abs/2207.13842v4
- Date: Thu, 23 May 2024 13:14:08 GMT
- Title: Dive into Machine Learning Algorithms for Influenza Virus Host Prediction with Hemagglutinin Sequences
- Authors: Yanhua Xu, Dominik Wojtczak,
- Abstract summary: Influenza viruses mutate rapidly and can pose a threat to public health, especially to those in vulnerable groups.
Recently, there has been increasing interest in using machine learning algorithms to provide fast and accurate predictions for viral sequences.
In this study, real testing data sets and a variety of evaluation metrics were used to evaluate machine learning algorithms at different taxonomic levels.
- Score: 4.289396744209968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Influenza viruses mutate rapidly and can pose a threat to public health, especially to those in vulnerable groups. Throughout history, influenza A viruses have caused pandemics between different species. It is important to identify the origin of a virus in order to prevent the spread of an outbreak. Recently, there has been increasing interest in using machine learning algorithms to provide fast and accurate predictions for viral sequences. In this study, real testing data sets and a variety of evaluation metrics were used to evaluate machine learning algorithms at different taxonomic levels. As hemagglutinin is the major protein in the immune response, only hemagglutinin sequences were used and represented by position-specific scoring matrix and word embedding. The results suggest that the 5-grams-transformer neural network is the most effective algorithm for predicting viral sequence origins, with approximately 99.54% AUCPR, 98.01% F1 score and 96.60% MCC at a higher classification level, and approximately 94.74% AUCPR, 87.41% F1 score and 80.79% MCC at a lower classification level.
Related papers
- Virus2Vec: Viral Sequence Classification Using Machine Learning [48.40285316053593]
We propose Virus2Vec, a feature-vector representation for viral sequences that enable machine learning models to identify viral hosts.
We empirically evaluate Virus2Vec on real-world spike sequences of Coronaviridae and rabies virus sequence data to predict the host.
Our results demonstrate that Virus2Vec outperforms the predictive accuracies of baseline and state-of-the-art methods.
arXiv Detail & Related papers (2023-04-24T08:17:16Z) - PCD2Vec: A Poisson Correction Distance-Based Approach for Viral Host
Classification [0.966840768820136]
Coronaviruses are membrane-enveloped, non-segmented positive-strand RNA viruses belonging to the Coronaviridae family.
In the Coronavirus genome, an essential structural region is the spike region, and it's responsible for attaching the virus to the host cell membrane.
We propose a novel method for predicting the host specificity of coronaviruses by analyzing spike protein sequences from different viral subgenera and species.
arXiv Detail & Related papers (2023-04-13T03:02:22Z) - Monkeypox virus detection using pre-trained deep learning-based
approaches [1.713291434132985]
Monkeypox virus is emerging slowly with the decline of COVID-19 virus infections around the world.
It is crucial to detect them earlier before widespread community transmission.
In this paper, we aim to compare 13 different pre-trained deep learning (DL) models for the Monkeypox virus detection.
arXiv Detail & Related papers (2022-09-06T23:17:34Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Accurate Virus Identification with Interpretable Raman Signatures by
Machine Learning [12.184128048998906]
We present a machine learning approach for analyzing Raman spectra of human and avian viruses.
A Convolutional Neural Network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks.
arXiv Detail & Related papers (2022-06-05T22:31:14Z) - Predicting Influenza A Viral Host Using PSSM and Word Embeddings [5.067354030054702]
We use various machine learning models with features derived from the position-specific scoring matrix (PSSM) to infer the origin host of viruses.
The results show that the performance of the PSSM-based model reaches the MCC around 95%, and the F1 around 96%.
arXiv Detail & Related papers (2022-01-04T14:05:49Z) - Classification of Influenza Hemagglutinin Protein Sequences using
Convolutional Neural Networks [8.397189036839956]
This paper focuses on accurately predicting if an Influenza type A virus can infect specific hosts, and more specifically, Human, Avian and Swine hosts, using only the protein sequence of the HA gene.
We propose encoding the protein sequences into numerical signals using the Hydrophobicity Index and subsequently utilising a Convolutional Neural Network-based predictive model.
As the results show, the proposed model can distinguish HA protein sequences with high accuracy whenever the virus under investigation can infect Human, Avian or Swine hosts.
arXiv Detail & Related papers (2021-08-09T10:42:26Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.