MLRIP: Pre-training a military language representation model with
informative factual knowledge and professional knowledge base
- URL: http://arxiv.org/abs/2207.13929v1
- Date: Thu, 28 Jul 2022 07:39:30 GMT
- Title: MLRIP: Pre-training a military language representation model with
informative factual knowledge and professional knowledge base
- Authors: Hui Li, Xuekang Yang, Xin Zhao, Lin Yu, Jiping Zheng and Wei Sun
- Abstract summary: Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement.
We propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy.
Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
- Score: 11.016827497014821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating prior knowledge into pre-trained language models has proven to
be effective for knowledge-driven NLP tasks, such as entity typing and relation
extraction. Current pre-training procedures usually inject external knowledge
into models by using knowledge masking, knowledge fusion and knowledge
replacement. However, factual information contained in the input sentences have
not been fully mined, and the external knowledge for injecting have not been
strictly checked. As a result, the context information cannot be fully
exploited and extra noise will be introduced or the amount of knowledge
injected is limited. To address these issues, we propose MLRIP, which modifies
the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a
two-stage entity replacement strategy. Extensive experiments with comprehensive
analyses illustrate the superiority of MLRIP over BERT-based models in military
knowledge-driven NLP tasks.
Related papers
- Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - Knowledge Prompting in Pre-trained Language Model for Natural Language
Understanding [24.315130086787374]
We propose a knowledge-prompting-based PLM framework KP-PLM.
This framework can be flexibly combined with existing mainstream PLMs.
To further leverage the factual knowledge from these prompts, we propose two novel knowledge-aware self-supervised tasks.
arXiv Detail & Related papers (2022-10-16T13:36:57Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities.
Previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs.
We propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages.
arXiv Detail & Related papers (2021-12-02T08:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.