Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication
Systems
- URL: http://arxiv.org/abs/2207.14174v1
- Date: Thu, 28 Jul 2022 15:37:49 GMT
- Title: Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication
Systems
- Authors: Songjie Yang, Baojuan Liu, Zhiqin Hong, Zhongpei Zhang
- Abstract summary: beam alignment (BA) is a critical issue in millimeter wave communication (mmWave)
We present a novel beam alignment scheme on the basis of a machine learning strategy, Bayesian optimization (BO)
In this work, we consider the beam alignment issue to be a black box function and then use BO to find the possible optimal beam pair.
- Score: 1.7467279441152421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the very narrow beam used in millimeter wave communication (mmWave),
beam alignment (BA) is a critical issue. In this work, we investigate the issue
of mmWave BA and present a novel beam alignment scheme on the basis of a
machine learning strategy, Bayesian optimization (BO). In this context, we
consider the beam alignment issue to be a black box function and then use BO to
find the possible optimal beam pair. During the BA procedure, this strategy
exploits information from the measured beam pairs to predict the best beam
pair. In addition, we suggest a novel BO algorithm based on the gradient
boosting regression tree model. The simulation results demonstrate the spectral
efficiency performance of our proposed schemes for BA using three different
surrogate models. They also demonstrate that the proposed schemes can achieve
spectral efficiency with a small overhead when compared to the orthogonal match
pursuit (OMP) algorithm and the Thompson sampling-based multi-armed bandit
(TS-MAB) method.
Related papers
- Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Light and Optimal Schrödinger Bridge Matching [67.93806073192938]
We propose a novel procedure to learn Schr"odinger Bridges (SB) which we call the textbf Schr"odinger bridge matching.
We show that the optimal bridge matching objective coincides with the recently discovered energy-based modeling (EBM) objectives to learn EOT/SB.
We develop a light solver (which we call LightSB-M) to implement optimal matching in practice using the mixture parameterization of the Schr"odinger potential.
arXiv Detail & Related papers (2024-02-05T17:17:57Z) - HoloBeam: Learning Optimal Beamforming in Far-Field Holographic
Metasurface Transceivers [5.402030962296633]
Holographic Metasurface Transceivers (HMTs) are emerging as cost-effective substitutes to large antenna arrays for beamforming in Millimeter and TeraHertz wave communication.
To achieve desired channel gains through beamforming in HMT, phase-shifts of a large number of elements need to be appropriately set, which is challenging.
We develop a learning algorithm using a it fixed-budget multi-armed bandit framework to beamform and maximize received signal strength at the receiver for far-field regions.
arXiv Detail & Related papers (2023-12-30T03:29:32Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - UB3: Best Beam Identification in Millimeter Wave Systems via Pure
Exploration Unimodal Bandits [7.253481390411171]
We develop an algorithm that exploits the unimodal structure of the received signal strengths of the beams to identify the best beam in a finite time.
Our algorithm is named Unimodal Bandit for Best Beam (UB3) and identifies the best beam with a high probability in a few rounds.
arXiv Detail & Related papers (2022-12-26T09:24:22Z) - Fast Beam Alignment via Pure Exploration in Multi-armed Bandits [91.11360914335384]
We develop a bandit-based fast BA algorithm to reduce BA latency for millimeter-wave (mmWave) communications.
Our algorithm is named Two-Phase Heteroscedastic Track-and-Stop (2PHT&S)
arXiv Detail & Related papers (2022-10-23T05:57:39Z) - Deep Learning Assisted Calibrated Beam Training for Millimeter-Wave
Communication Systems [15.297530726877786]
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications.
We propose a wide beam based training approach to calibrate the narrow beam direction according to the channel power leakage.
To handle the complex nonlinear properties of the channel power leakage, deep learning is utilized to predict the optimal narrow beam directly.
arXiv Detail & Related papers (2021-01-08T04:02:34Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Beamforming Learning for mmWave Communication: Theory and Experimental
Validation [23.17604790640996]
We propose a beam design technique that reduces the search time and does not require CSI while guaranteeing a minimum beamforming gain.
We evaluate the efficacy of the proposed scheme in terms of building the codebook and assessing its performance through real-life measurements.
arXiv Detail & Related papers (2019-12-28T05:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.