Deep Learning-based Occluded Person Re-identification: A Survey
- URL: http://arxiv.org/abs/2207.14452v1
- Date: Fri, 29 Jul 2022 03:10:18 GMT
- Title: Deep Learning-based Occluded Person Re-identification: A Survey
- Authors: Yunjie Peng, Saihui Hou, Chunshui Cao, Xu Liu, Yongzhen Huang,
Zhiqiang He
- Abstract summary: Occluded person re-identification (Re-ID) aims at addressing the occlusion problem when retrieving the person of interest across multiple cameras.
This paper provides a systematic survey of occluded person Re-ID methods.
We summarize four issues caused by occlusion in person Re-ID, i.e., position misalignment, scale misalignment, noisy information, and missing information.
- Score: 19.76711535866007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occluded person re-identification (Re-ID) aims at addressing the occlusion
problem when retrieving the person of interest across multiple cameras. With
the promotion of deep learning technology and the increasing demand for
intelligent video surveillance, the frequent occlusion in real-world
applications has made occluded person Re-ID draw considerable interest from
researchers. A large number of occluded person Re-ID methods have been proposed
while there are few surveys that focus on occlusion. To fill this gap and help
boost future research, this paper provides a systematic survey of occluded
person Re-ID. Through an in-depth analysis of the occlusion in person Re-ID,
most existing methods are found to only consider part of the problems brought
by occlusion. Therefore, we review occlusion-related person Re-ID methods from
the perspective of issues and solutions. We summarize four issues caused by
occlusion in person Re-ID, i.e., position misalignment, scale misalignment,
noisy information, and missing information. The occlusion-related methods
addressing different issues are then categorized and introduced accordingly.
After that, we summarize and compare the performance of recent occluded person
Re-ID methods on four popular datasets: Partial-ReID, Partial-iLIDS,
Occluded-ReID, and Occluded-DukeMTMC. Finally, we provide insights on promising
future research directions.
Related papers
- Keypoint Promptable Re-Identification [76.31113049256375]
Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance.
We introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints.
We release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-25T15:20:58Z) - Occluded Person Re-Identification with Deep Learning: A Survey and
Perspectives [8.026271369888956]
Occluded person Re-ID refers to a pedestrian matching method that deals with challenges such as pedestrian information loss, noise interference, and perspective misalignment.
We scientifically classify and analyze existing deep learning-based occluded person Re-ID methods from various perspectives, summarizing them concisely.
arXiv Detail & Related papers (2023-11-01T15:52:51Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID) is an important and challenging task in intelligent video surveillance.
Existing methods mainly focus on learning a shared feature space to reduce the modality discrepancy between visible and infrared modalities.
We present a novel mutual information and modality consensus network, namely CMInfoNet, to extract modality-invariant identity features.
arXiv Detail & Related papers (2023-08-29T06:55:42Z) - Occluded Person Re-Identification via Relational Adaptive Feature
Correction Learning [8.015703163954639]
Occluded person re-identification (Re-ID) in images captured by multiple cameras is challenging because the target person is occluded by pedestrians or objects.
Most existing methods utilize the off-the-shelf pose or parsing networks as pseudo labels, which are prone to error.
We propose a novel Occlusion Correction Network (OCNet) that corrects features through relational-weight learning and obtains diverse and representative features without using external networks.
arXiv Detail & Related papers (2022-12-09T07:48:47Z) - Unsupervised Person Re-Identification: A Systematic Survey of Challenges
and Solutions [64.68497473454816]
Unsupervised person Re-ID has drawn increasing attention for its potential to address the scalability issue in person Re-ID.
Unsupervised person Re-ID is challenging primarily due to lacking identity labels to supervise person feature learning.
This survey review recent works on unsupervised person Re-ID from the perspective of challenges and solutions.
arXiv Detail & Related papers (2021-09-01T00:01:35Z) - PoseTrackReID: Dataset Description [97.7241689753353]
Pose information is helpful to disentangle useful feature information from background or occlusion noise.
With PoseTrackReID, we want to bridge the gap between person re-ID and multi-person pose tracking.
This dataset provides a good benchmark for current state-of-the-art methods on multi-frame person re-ID.
arXiv Detail & Related papers (2020-11-12T07:44:25Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras.
By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings.
arXiv Detail & Related papers (2020-01-13T12:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.