Open World Learning Graph Convolution for Latency Estimation in Routing Networks
- URL: http://arxiv.org/abs/2207.14643v2
- Date: Fri, 26 Apr 2024 15:22:22 GMT
- Title: Open World Learning Graph Convolution for Latency Estimation in Routing Networks
- Authors: Yifei Jin, Marios Daoutis, Sarunas Girdzijauskas, Aristides Gionis,
- Abstract summary: We propose a novel approach for modeling network routing, using Graph Neural Networks.
Our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior.
We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.
- Score: 16.228327606985257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle scaled and drifted network attributes in test sets that include open-world inputs. To deal with these challenges, we propose a novel approach for modeling network routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our model outperforms most conventional deep-learning-based models, in terms of prediction accuracy, computational resources, inference speed, as well as ability to generalize towards open-world input.
Related papers
- Towards a graph-based foundation model for network traffic analysis [3.0558245652654907]
Foundation models can grasp the complexities of network traffic dynamics and adapt to any specific task or environment with minimal fine-tuning.
Previous approaches have used tokenized hex-level packet data.
We propose a new, efficient graph-based alternative at the flow-level.
arXiv Detail & Related papers (2024-09-12T15:04:34Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - RouteNet-Fermi: Network Modeling with Graph Neural Networks [7.227467283378366]
We present RouteNet-Fermi, a custom Graph Neural Networks (GNN) model that shares the same goals as Queuing Theory.
The proposed model predicts accurately the delay, jitter, and packet loss of a network.
Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators.
arXiv Detail & Related papers (2022-12-22T23:02:40Z) - RouteNet-Erlang: A Graph Neural Network for Network Performance
Evaluation [5.56275556529722]
We present emphRouteNet-Erlang, a pioneering GNN architecture designed to model computer networks.
RouteNet-Erlang supports complex traffic models, multi-queue scheduling policies, routing policies and can provide accurate estimates.
We benchmark RouteNet-Erlang against a state-of-the-art QT model, and our results show that it outperforms QT in all the network scenarios.
arXiv Detail & Related papers (2022-02-28T17:09:53Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Applying Graph-based Deep Learning To Realistic Network Scenarios [5.453745629140304]
This paper presents a new Graph-based deep learning model able to estimate accurately the per-path mean delay in networks.
The proposed model can generalize successfully over topologies, routing configurations, queue scheduling policies and traffic matrices unseen during the training phase.
arXiv Detail & Related papers (2020-10-13T20:58:59Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.