Meta Reinforcement Learning with Successor Feature Based Context
- URL: http://arxiv.org/abs/2207.14723v1
- Date: Fri, 29 Jul 2022 14:52:47 GMT
- Title: Meta Reinforcement Learning with Successor Feature Based Context
- Authors: Xu Han and Feng Wu
- Abstract summary: We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
- Score: 51.35452583759734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most reinforcement learning (RL) methods only focus on learning a single task
from scratch and are not able to use prior knowledge to learn other tasks more
effectively. Context-based meta RL techniques are recently proposed as a
possible solution to tackle this. However, they are usually less efficient than
conventional RL and may require many trial-and-errors during training. To
address this, we propose a novel meta-RL approach that achieves competitive
performance comparing to existing meta-RL algorithms, while requires
significantly fewer environmental interactions. By combining context variables
with the idea of decomposing reward in successor feature framework, our method
does not only learn high-quality policies for multiple tasks simultaneously but
also can quickly adapt to new tasks with a small amount of training. Compared
with state-of-the-art meta-RL baselines, we empirically show the effectiveness
and data efficiency of our method on several continuous control tasks.
Related papers
- A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Efficient Meta Reinforcement Learning for Preference-based Fast
Adaptation [17.165083095799712]
We study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning.
We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback.
arXiv Detail & Related papers (2022-11-20T03:55:09Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL [91.26538493552817]
We present a formulation of hindsight relabeling for meta-RL, which relabels experience during meta-training to enable learning to learn entirely using sparse reward.
We demonstrate the effectiveness of our approach on a suite of challenging sparse reward goal-reaching environments.
arXiv Detail & Related papers (2021-12-02T00:51:17Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.