Machine and quantum learning for diamond-based quantum applications
- URL: http://arxiv.org/abs/2208.00256v1
- Date: Sat, 30 Jul 2022 15:36:26 GMT
- Title: Machine and quantum learning for diamond-based quantum applications
- Authors: Dylan G. Stone and Carlo Bradac
- Abstract summary: We discuss and analyze the role machine and quantum learning are playing in the development of diamond-based quantum technologies.
We show that machine and quantum learning are leading to both practical and fundamental improvements in measurement speed and accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, machine and quantum learning have gained considerable
momentum sustained by growth in computational power and data availability and
have shown exceptional aptness for solving recognition- and classification-type
problems, as well as problems that require complex, strategic planning. In this
work, we discuss and analyze the role machine and quantum learning are playing
in the development of diamond-based quantum technologies. This matters as
diamond and its optically-addressable spin defects are becoming prime hardware
candidates for solid state-based applications in quantum information, computing
and metrology. Through a selected number of demonstrations, we show that
machine and quantum learning are leading to both practical and fundamental
improvements in measurement speed and accuracy. This is crucial for quantum
applications, especially for those where coherence time and signal-to-noise
ratio are scarce resources. We summarize some of the most prominent machine and
quantum learning approaches that have been conducive to the presented advances
and discuss their potential for proposed and future quantum applications.
Related papers
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Machine Learning for Quantum Matter [0.0]
We review the recent development and adaptation of machine learning ideas for the purpose advancing research in quantum matter.
We discuss the outlook for future developments in areas at the intersection between machine learning and quantum many-body physics.
arXiv Detail & Related papers (2020-03-24T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.