Quantum Error Correction: Noise-adapted Techniques and Applications
- URL: http://arxiv.org/abs/2208.00365v1
- Date: Sun, 31 Jul 2022 05:23:50 GMT
- Title: Quantum Error Correction: Noise-adapted Techniques and Applications
- Authors: Akshaya Jayashankar and Prabha Mandayam
- Abstract summary: Theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated.
We focus on recent theoretical advances in the domain of noise-adapted QEC, and highlight some key open questions.
We conclude with a review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.
- Score: 2.122752621320654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum computing devices of today have tens to hundreds of qubits that
are highly susceptible to noise due to unwanted interactions with their
environment. The theory of quantum error correction provides a scheme by which
the effects of such noise on quantum states can be mitigated, paving the way
for realising robust, scalable quantum computers. In this article we survey the
current landscape of quantum error correcting (QEC) codes, focusing on recent
theoretical advances in the domain of noise-adapted QEC, and highlighting some
key open questions. We also discuss the interesting connections that have
emerged between such adaptive QEC techniques and fundamental physics,
especially in the areas of many-body physics and cosmology. We conclude with a
brief review of the theory of quantum fault tolerance which gives a
quantitative estimate of the physical noise threshold below which
error-resilient quantum computation is possible.
Related papers
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum-Error-Mitigation Circuit Groups for Noisy Quantum Metrology [0.0]
Quantum technologies work by utilizing properties inherent in quantum systems such as quantum coherence and quantum entanglement.
Quantum technologies are fragile against an interaction with an environment (decoherence) and in order to utilize them with high accuracy we need to develop error mitigation techniques.
arXiv Detail & Related papers (2023-03-03T10:01:42Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - NISQ: Error Correction, Mitigation, and Noise Simulation [0.39146761527401414]
Error-correcting codes were invented to correct errors on noisy communication channels.
Quantum error correction (QEC) may have a wider range of uses, including information transmission, quantum simulation/computation, and fault-tolerance.
This work examines the task of Quantum Error Mitigation (QEM) from several perspectives.
arXiv Detail & Related papers (2021-11-03T16:55:47Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Quantum Noise Sensing by generating Fake Noise [5.8010446129208155]
We propose a framework to characterize noise in a realistic quantum device.
Key idea is to learn about the noise by mimicking it in a way that one cannot distinguish between the real (to be sensed) and the fake (generated) one.
We find that, when applied to the benchmarking case of Pauli channels, the SuperQGAN protocol is able to learn the associated error rates even in the case of spatially and temporally correlated noise.
arXiv Detail & Related papers (2021-07-19T09:42:37Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.