CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and
Benchmark for Tooth Volume Segmentation
- URL: http://arxiv.org/abs/2208.01643v1
- Date: Tue, 2 Aug 2022 09:13:23 GMT
- Title: CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and
Benchmark for Tooth Volume Segmentation
- Authors: Weiwei Cui, Yaqi Wang, Yilong Li, Dan Song, Xingyong Zuo, Jiaojiao
Wang, Yifan Zhang, Huiyu Zhou, Bung san Chong, Liaoyuan Zeng, Qianni Zhang
- Abstract summary: Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth.
We establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes.
This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development.
- Score: 21.474631912695315
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate tooth volume segmentation is a prerequisite for computer-aided
dental analysis. Deep learning-based tooth segmentation methods have achieved
satisfying performances but require a large quantity of tooth data with ground
truth. The dental data publicly available is limited meaning the existing
methods can not be reproduced, evaluated and applied in clinical practice. In
this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully
annotated volumes and 146 unlabeled volumes. We further evaluate several
state-of-the-art tooth volume segmentation strategies based on fully-supervised
learning, semi-supervised learning and active learning, and define the
performance principles. This work provides a new benchmark for the tooth volume
segmentation task, and the experiment can serve as the baseline for future
AI-based dental imaging research and clinical application development.
Related papers
- Instance Segmentation and Teeth Classification in Panoramic X-rays [35.8246552579468]
Teeth segmentation and recognition are critical in various dental applications and dental diagnosis.
This article offers a pipeline of two deep learning models, U-Net and YOLOv8, which results in BB-UNet.
We have improved the quality and reliability of teeth segmentation by utilising the YOLOv8 and U-Net capabilities.
arXiv Detail & Related papers (2024-06-06T04:57:29Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
We propose a novel teeth segmentation model incorporating an M-Net-like structure with Swin Transformers and TAB.
The proposed TAB utilizes a unique attention mechanism that focuses specifically on the complex structures of teeth.
The proposed architecture effectively captures local and global contextual information, accurately defining each tooth and its surrounding structures.
arXiv Detail & Related papers (2023-11-07T06:20:34Z) - A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
We present a comprehensive approach to teeth segmentation and orientation from panoramic X-ray images, leveraging deep learning techniques.
We build our model based on FUSegNet, a popular model originally developed for wound segmentation.
We introduce oriented bounding box (OBB) generation through principal component analysis (PCA) for precise tooth orientation estimation.
arXiv Detail & Related papers (2023-10-26T06:01:25Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - A Critical Analysis of the Limitation of Deep Learning based 3D Dental
Mesh Segmentation Methods in Segmenting Partial Scans [44.44628400981646]
Tooth segmentation from intraoral scans is a crucial part of digital dentistry.
Many Deep Learning based tooth segmentation algorithms have been developed for this task.
In most of the cases, high accuracy has been achieved, although, most of the available tooth segmentation techniques make an implicit restrictive assumption of full jaw model.
arXiv Detail & Related papers (2023-04-29T11:58:23Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
We develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
A total of 159 CBCT images of real subjects are collected to perform the constructions.
arXiv Detail & Related papers (2023-04-07T09:39:03Z) - CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume
Segmentation on Cone Beam Computed Tomography Images [19.79983193894742]
3D tooth segmentation is a prerequisite for computer-aided dental diagnosis and treatment.
Deep learning-based segmentation methods produce convincing results, but it requires a large quantity of ground truth for training.
In this paper, we establish a fully annotated cone beam computed tomography dataset CTooth with tooth gold standard.
arXiv Detail & Related papers (2022-06-17T13:48:35Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
This study addresses the construction of a public data set of dental panoramic radiographs.
We benefit from the human-in-the-loop (HITL) concept to expedite the labeling procedure.
Results demonstrate a 51% labeling time reduction using HITL, saving us more than 390 continuous working hours.
arXiv Detail & Related papers (2022-03-29T18:57:23Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.