Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking
- URL: http://arxiv.org/abs/2208.02462v1
- Date: Thu, 4 Aug 2022 05:18:30 GMT
- Title: Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking
- Authors: Ruolin Su, Ting-Wei Wu, Biing-Hwang Juang
- Abstract summary: Dialogue state tracking (DST) aims to track human-machine interactions and generate state representations for managing the dialogue.
Recent advances in machine reading comprehension predict both categorical and non-categorical types of slots for dialogue state tracking.
We formulate and incorporate dialogue acts, and leverage recent advances in machine reading comprehension to predict both categorical and non-categorical types of slots for dialogue state tracking.
- Score: 5.816391291790977
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As an essential component in task-oriented dialogue systems, dialogue state
tracking (DST) aims to track human-machine interactions and generate state
representations for managing the dialogue. Representations of dialogue states
are dependent on the domain ontology and the user's goals. In several
task-oriented dialogues with a limited scope of objectives, dialogue states can
be represented as a set of slot-value pairs. As the capabilities of dialogue
systems expand to support increasing naturalness in communication,
incorporating dialogue act processing into dialogue model design becomes
essential. The lack of such consideration limits the scalability of dialogue
state tracking models for dialogues having specific objectives and ontology. To
address this issue, we formulate and incorporate dialogue acts, and leverage
recent advances in machine reading comprehension to predict both categorical
and non-categorical types of slots for multi-domain dialogue state tracking.
Experimental results show that our models can improve the overall accuracy of
dialogue state tracking on the MultiWOZ 2.1 dataset, and demonstrate that
incorporating dialogue acts can guide dialogue state design for future
task-oriented dialogue systems.
Related papers
- Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
This paper proposes a comprehensive analysis of the errors of state of the art systems in complex settings such as Dialogue State Tracking.
Based on spoken MultiWoz, we identify that errors on non-categorical slots' values are essential to address in order to bridge the gap between spoken and chat-based dialogue systems.
arXiv Detail & Related papers (2023-11-03T08:45:22Z) - Dialog-to-Actions: Building Task-Oriented Dialogue System via
Action-Level Generation [7.110201160927713]
We propose a task-oriented dialogue system via action-level generation.
Specifically, we first construct dialogue actions from large-scale dialogues and represent each natural language (NL) response as a sequence of dialogue actions.
We train a Sequence-to-Sequence model which takes the dialogue history as input and outputs sequence of dialogue actions.
arXiv Detail & Related papers (2023-04-03T11:09:20Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing.
We propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization.
We show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.
arXiv Detail & Related papers (2022-12-24T04:39:54Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
We propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction.
USDA incorporates the sequential transitions of both content and act features in the dialogue to predict the user satisfaction.
Experimental results on four benchmark goal-oriented dialogue datasets show that the proposed method substantially and consistently outperforms existing methods on USE.
arXiv Detail & Related papers (2022-02-07T02:50:07Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
We propose a unified dialogue system (UniDS) with the two aforementioned skills.
We design a unified dialogue data schema, compatible for both chit-chat and task-oriented dialogues.
We train UniDS with mixed dialogue data from a pretrained chit-chat dialogue model.
arXiv Detail & Related papers (2021-10-15T11:56:47Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue
States and Conversations [2.6529642559155944]
We propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network.
This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots.
arXiv Detail & Related papers (2021-07-12T02:30:30Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
"UniConv" is a novel unified neural architecture for end-to-end conversational systems in task-oriented dialogues.
We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark.
arXiv Detail & Related papers (2020-04-29T16:28:22Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.