SOMPT22: A Surveillance Oriented Multi-Pedestrian Tracking Dataset
- URL: http://arxiv.org/abs/2208.02580v1
- Date: Thu, 4 Aug 2022 11:09:19 GMT
- Title: SOMPT22: A Surveillance Oriented Multi-Pedestrian Tracking Dataset
- Authors: Fatih Emre Simsek, Cevahir Cigla, Koray Kayabol
- Abstract summary: We introduce SOMPT22 dataset; a new set for multi person tracking with annotated short videos captured from static cameras located on poles with 6-8 meters in height positioned for city surveillance.
We analyze MOT trackers classified as one-shot and two-stage with respect to the way of use of detection and reID networks on this new dataset.
The experimental results of our new dataset indicate that SOTA is still far from high efficiency, and single-shot trackers are good candidates to unify fast execution and accuracy with competitive performance.
- Score: 5.962184741057505
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-object tracking (MOT) has been dominated by the use of track by
detection approaches due to the success of convolutional neural networks (CNNs)
on detection in the last decade. As the datasets and bench-marking sites are
published, research direction has shifted towards yielding best accuracy on
generic scenarios including re-identification (reID) of objects while tracking.
In this study, we narrow the scope of MOT for surveillance by providing a
dedicated dataset of pedestrians and focus on in-depth analyses of well
performing multi-object trackers to observe the weak and strong sides of
state-of-the-art (SOTA) techniques for real-world applications. For this
purpose, we introduce SOMPT22 dataset; a new set for multi person tracking with
annotated short videos captured from static cameras located on poles with 6-8
meters in height positioned for city surveillance. This provides a more focused
and specific benchmarking of MOT for outdoor surveillance compared to public
MOT datasets. We analyze MOT trackers classified as one-shot and two-stage with
respect to the way of use of detection and reID networks on this new dataset.
The experimental results of our new dataset indicate that SOTA is still far
from high efficiency, and single-shot trackers are good candidates to unify
fast execution and accuracy with competitive performance. The dataset will be
available at: sompt22.github.io
Related papers
- OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTracker is presented to resolve all the tracking tasks with a fully shared network architecture, model weights, and inference pipeline.
Experiments on 7 tracking datasets, including LaSOT, TrackingNet, DAVIS16-17, MOT17, MOTS20, and YTVIS19, demonstrate that OmniTracker achieves on-par or even better results than both task-specific and unified tracking models.
arXiv Detail & Related papers (2023-03-21T17:59:57Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Multi-Object Tracking and Segmentation with a Space-Time Memory Network [12.043574473965318]
We propose a method for multi-object tracking and segmentation based on a novel memory-based mechanism to associate tracklets.
The proposed tracker, MeNToS, addresses particularly the long-term data association problem.
arXiv Detail & Related papers (2021-10-21T17:13:17Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
We propose a hybrid track association algorithm that models the historical appearance distances of a track with an incremental Gaussian mixture model (IGMM)
Experimental results on three MOT benchmarks confirm that HTA effectively improves the target identification performance with a small compromise to the tracking speed.
arXiv Detail & Related papers (2021-07-01T14:44:12Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
In this work, we adopt the pre-trained Mask R-CNN deep object detector as the baseline.
We introduce a novel inference architecture placed on top of FPN-ResNet101 backbone of Mask R-CNN to jointly perform detection and tracking.
The proposed single object tracker, TDIOT, applies an appearance similarity-based temporal matching for data association.
arXiv Detail & Related papers (2021-03-19T20:45:06Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.