Nonperturbative Casimir effects: Vacuum structure, Confinement, and
Chiral Symmetry Breaking
- URL: http://arxiv.org/abs/2208.03457v1
- Date: Sat, 6 Aug 2022 07:39:36 GMT
- Title: Nonperturbative Casimir effects: Vacuum structure, Confinement, and
Chiral Symmetry Breaking
- Authors: Alexander Molochkov
- Abstract summary: We consider phase properties of confining gauge theories and strongly interacting fermion systems.
In particular, the chiral and deconfinement phase transitions properties in the presence of Casimir plates.
- Score: 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The review of vacuum and matter restructuring in space-time with boundaries
is presented. We consider phase properties of confining gauge theories and
strongly interacting fermion systems. In particular, the chiral and
deconfinement phase transitions properties in the presence of Casimir plates.
We also discuss mass scale shifts in such systems and their possible dynamical
and geometrical nature.
Related papers
- Quantum Fragmentation in the Extended Quantum Breakdown Model [0.0]
We analytically show that, in the absence of any magnetic field for the spins, the model exhibits Hilbert space fragmentation into exponentially many Krylov subspaces.
We also study the long-time behavior of the entanglement entropy and its deviation from the expected Page value as a probe of ergodicity in the system.
arXiv Detail & Related papers (2024-01-29T19:00:10Z) - Hybrid Geometrodynamics: A Hamiltonian description of classical gravity
coupled to quantum matter [0.0]
We generalize the Hamiltonian picture of General Relativity coupled to classical matter, known as geometrodynamics, to the case where gravity is described by a Quantum Field Theory in Curved Spacetime.
In our approach there is no non-dynamic background structure, apart from the manifold of events, and the gravitational and quantum degrees of freedom have their dynamics inextricably coupled.
An important feature of this work is the use of Gaussian measures over the space of matter fields and of Hida distributions to define a common superspace to all possible Hilbert spaces with different measures, to properly characterize the Schrodinger wave functional picture of QFT in
arXiv Detail & Related papers (2023-07-03T10:46:40Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Interplay between optomechanics and the dynamical Casimir effect [55.41644538483948]
We develop a model of a quantum field confined within a cavity with a movable wall where the position of the wall is quantized.
We obtain a full description of the dynamics of both the quantum field and the confining wall depending on the initial state of the whole system.
arXiv Detail & Related papers (2022-04-22T14:27:30Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Indirect detection of Cosmological Constant from interacting open
quantum system [1.3456412091502525]
We study the indirect detection of Cosmological Constant from an open quantum system of interacting spins.
We construct states using a generalisation of the superposition principle.
The corresponding spectroscopic shifts are seen to play a crucial role in predicting a very tiny value of the Cosmological Constant.
arXiv Detail & Related papers (2020-04-27T18:00:26Z) - Quantum field theory with dynamical boundary conditions and the Casimir
effect [0.0]
We study a coupled system that describes the interacting dynamics between a bulk field, confined to a finite region with timelike boundary, and a boundary observable.
We cast our classical system in the form of an abstract linear Klein-Gordon equation, in an enlarged Hilbert space for the bulk field and the boundary observable.
Specifically, we compute the renormalized local state polarization and the local Casimir energy, which we can define for both the bulk field and the boundary observable of our system.
arXiv Detail & Related papers (2020-04-12T16:27:16Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.