Zero-energy states in graphene quantum dot with wedge disclination
- URL: http://arxiv.org/abs/2208.04920v1
- Date: Tue, 9 Aug 2022 17:31:49 GMT
- Title: Zero-energy states in graphene quantum dot with wedge disclination
- Authors: Ahmed Bouhlal, Ahmed Jellal, Nurisya Mohd Shah
- Abstract summary: We investigate the effects of wedge disclination on charge carriers in circular graphene quantum dots subjected to a magnetic flux.
It is found that the density of states shows several resonance peaks under various conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the effects of wedge disclination on charge carriers in
circular graphene quantum dots subjected to a magnetic flux. Using the
asymptotic solutions of the energy spectrum for large arguments, we approximate
the scattering matrix elements, and then study the density of states. It is
found that the density of states shows several resonance peaks under various
conditions. In particular, it is shown that the wedge disclination is able to
change the amplitude, width, and positions of resonance peaks.
Related papers
- Electron scattering of mass-inverted in graphene quantum dots [0.0]
We study the scattering of Dirac electrons of circular graphene quantum dot with mass-inverted subject to electrostatic potential.
It is found that the presence of a mass term outside in addition to another one inside the quantum dot strongly affects the scattering of electrons.
arXiv Detail & Related papers (2022-02-25T18:37:26Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Massive and massless two-dimensional Dirac particles in electric quantum
dots [0.0]
We investigate the confining properties of charged particles of a Dirac material in the plane subject to an electrostatic potential well.
To have a global picture of confinement, both bound and resonance states are considered.
We show that although the intensity of the resonances for massive particles is not significantly influenced by angular momenta, on the contrary, for massless particles they are quite sensitive to angular momenta.
arXiv Detail & Related papers (2021-04-14T07:38:40Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Honeycomb structures in magnetic fields [2.1402730291988563]
We consider reduced-dimensionality models of honeycomb lattices in magnetic fields and report results about the spectrum, the density of states, self-similarity, and metal/insulator transitions under disorder.
arXiv Detail & Related papers (2020-08-14T12:40:23Z) - Energy Levels of Gapped Graphene Quantum Dot in Magnetic Field [0.0]
We study the energy levels of carriers confined in a magnetic quantum dot of graphene surrounded by a infinite graphene sheet in the presence of energy gap.
We numerically investigate our results and show that the energy levels exhibit the symmetric and antisymmetric behaviors under suitable conditions of the physical parameters.
arXiv Detail & Related papers (2020-08-06T15:32:57Z) - Density profile of a semi-infinite one-dimensional Bose gas and bound
states of the impurity [62.997667081978825]
We study the effect of the boundary on a system of weakly interacting bosons in one dimension.
The quantum contribution to the boson density gives rise to small corrections of the bound state energy levels.
arXiv Detail & Related papers (2020-07-21T13:12:33Z) - Density of States Analysis of Electrostatic Confinement in Gapped
Graphene [0.0]
We investigate the electrostatic confinement of charge carriers in a gapped graphene quantum dot in the presence of a magnetic flux.
It is found that the energy gap can controls the amplitude and width of these resonances and affect their location in the density of states profile.
arXiv Detail & Related papers (2020-07-21T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.