Semantic Self-adaptation: Enhancing Generalization with a Single Sample
- URL: http://arxiv.org/abs/2208.05788v3
- Date: Wed, 13 Dec 2023 22:46:16 GMT
- Title: Semantic Self-adaptation: Enhancing Generalization with a Single Sample
- Authors: Sherwin Bahmani, Oliver Hahn, Eduard Zamfir, Nikita Araslanov, Daniel
Cremers and Stefan Roth
- Abstract summary: We propose a self-adaptive approach for semantic segmentation.
It fine-tunes the parameters of convolutional layers to the input image using consistency regularization.
Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time.
- Score: 45.111358665370524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of out-of-domain generalization is a critical weakness of deep
networks for semantic segmentation. Previous studies relied on the assumption
of a static model, i. e., once the training process is complete, model
parameters remain fixed at test time. In this work, we challenge this premise
with a self-adaptive approach for semantic segmentation that adjusts the
inference process to each input sample. Self-adaptation operates on two levels.
First, it fine-tunes the parameters of convolutional layers to the input image
using consistency regularization. Second, in Batch Normalization layers,
self-adaptation interpolates between the training and the reference
distribution derived from a single test sample. Despite both techniques being
well known in the literature, their combination sets new state-of-the-art
accuracy on synthetic-to-real generalization benchmarks. Our empirical study
suggests that self-adaptation may complement the established practice of model
regularization at training time for improving deep network generalization to
out-of-domain data. Our code and pre-trained models are available at
https://github.com/visinf/self-adaptive.
Related papers
- Self-Supervised Learning for Covariance Estimation [3.04585143845864]
We propose to globally learn a neural network that will then be applied locally at inference time.
The architecture is based on the popular attention mechanism.
It can be pre-trained as a foundation model and then be repurposed for various downstream tasks, e.g., adaptive target detection in radar or hyperspectral imagery.
arXiv Detail & Related papers (2024-03-13T16:16:20Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Learning to Generalize across Domains on Single Test Samples [126.9447368941314]
We learn to generalize across domains on single test samples.
We formulate the adaptation to the single test sample as a variational Bayesian inference problem.
Our model achieves at least comparable -- and often better -- performance than state-of-the-art methods on multiple benchmarks for domain generalization.
arXiv Detail & Related papers (2022-02-16T13:21:04Z) - Test-time Batch Statistics Calibration for Covariate Shift [66.7044675981449]
We propose to adapt the deep models to the novel environment during inference.
We present a general formulation $alpha$-BN to calibrate the batch statistics.
We also present a novel loss function to form a unified test time adaptation framework Core.
arXiv Detail & Related papers (2021-10-06T08:45:03Z) - Parameter Decoupling Strategy for Semi-supervised 3D Left Atrium
Segmentation [0.0]
We present a novel semi-supervised segmentation model based on parameter decoupling strategy to encourage consistent predictions from diverse views.
Our method has achieved a competitive result over the state-of-the-art semisupervised methods on the Atrial Challenge dataset.
arXiv Detail & Related papers (2021-09-20T14:51:42Z) - SelfReg: Self-supervised Contrastive Regularization for Domain
Generalization [7.512471799525974]
We propose a new regularization method for domain generalization based on contrastive learning, self-supervised contrastive regularization (SelfReg)
The proposed approach use only positive data pairs, thus it resolves various problems caused by negative pair sampling.
In the recent benchmark, DomainBed, the proposed method shows comparable performance to the conventional state-of-the-art alternatives.
arXiv Detail & Related papers (2021-04-20T09:08:29Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.