Optomechanical Two-Photon Hopping
- URL: http://arxiv.org/abs/2208.05803v1
- Date: Thu, 11 Aug 2022 12:58:56 GMT
- Title: Optomechanical Two-Photon Hopping
- Authors: Enrico Russo, Alberto Mercurio, Fabio Mauceri, Rosario Lo Franco,
Franco Nori, Salvatore Savasta, and Vincenzo Macr\'i
- Abstract summary: We study two cavities separated by a vibrating two-sided perfect mirror and show that, within currently available experimental parameters, this system displays photon-pair hopping.
In particular, the two-photon hopping is not due to tunneling, but rather to higher order resonant processes.
- Score: 0.21108097398435333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hopping mechanism plays a key role in collective phenomena emerging in
many-body physics. The ability to create and control systems that display this
feature is important for next generation quantum technologies. Here we study
two cavities separated by a vibrating two-sided perfect mirror and show that,
within currently available experimental parameters, this system displays
photon-pair hopping between the two electromagnetic resonators. In particular,
the two-photon hopping is not due to tunneling, but rather to higher order
resonant processes. Starting from the classical problem, where the vibrating
mirror perfectly separates the two sides of the cavity, we quantize the system
and then the two sides can interact. This opens the possibility to investigate
a new mechanism of photon-pair propagation in optomechanical lattices.
Related papers
- Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - Bilateral photon emission from a vibrating mirror and multiphoton entanglement generation [1.0595929844849483]
Entanglement plays a crucial role in the development of quantum-enabled devices.
In this study, we explore a cavity resonator containing a two-sided perfect mirror.
We study $2n$-photon entanglement generation and bilateral photon pair emission.
arXiv Detail & Related papers (2024-02-06T19:21:42Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Coherent Resonant Coupling between Atoms and a Mechanical Oscillator
Mediated by Cavity-Vacuum Fluctuations [3.403770702932551]
We show that an atom can be coupled to a mechanical oscillator via quantum vacuum fluctuations of a cavity field.
In a hybrid quantum system consisting of a cavity resonator with a movable mirror and an atom, these processes are dominated by two pair-creation mechanisms.
arXiv Detail & Related papers (2022-04-18T10:00:45Z) - Optomechanical strong coupling between a single cavity photon and a
single atom [0.0]
Single atoms coupled to a cavity offer unique opportunities as quantum optomechanical devices because of their small mass and strong interaction with light.
We propose an alternative route in such systems, which relies on the coupling of atomic motion to the much narrower cavity-dressed atomic resonance frequency.
We analyze the prominent observable features of this optomechanical strong coupling, which include a per-photon motional heating that is significantly larger than the single-photon recoil energy.
arXiv Detail & Related papers (2021-08-07T21:32:17Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.