Joint Optimization of Ranking and Calibration with Contextualized Hybrid
Model
- URL: http://arxiv.org/abs/2208.06164v2
- Date: Sun, 28 May 2023 09:06:13 GMT
- Title: Joint Optimization of Ranking and Calibration with Contextualized Hybrid
Model
- Authors: Xiang-Rong Sheng, Jingyue Gao, Yueyao Cheng, Siran Yang, Shuguang Han,
Hongbo Deng, Yuning Jiang, Jian Xu, Bo Zheng
- Abstract summary: We propose an approach that can Jointly optimize the Ranking and abilities (JRC) for short.
JRC improves the ranking ability by contrasting the logit value for the sample with different labels and constrains the predicted probability to be a function of the logit subtraction.
JRC has been deployed on the display advertising platform of Alibaba and has obtained significant performance improvements.
- Score: 24.66016187602343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the development of ranking optimization techniques, pointwise loss
remains the dominating approach for click-through rate prediction. It can be
attributed to the calibration ability of the pointwise loss since the
prediction can be viewed as the click probability. In practice, a CTR
prediction model is also commonly assessed with the ranking ability. To
optimize the ranking ability, ranking loss (e.g., pairwise or listwise loss)
can be adopted as they usually achieve better rankings than pointwise loss.
Previous studies have experimented with a direct combination of the two losses
to obtain the benefit from both losses and observed an improved performance.
However, previous studies break the meaning of output logit as the
click-through rate, which may lead to sub-optimal solutions. To address this
issue, we propose an approach that can Jointly optimize the Ranking and
Calibration abilities (JRC for short). JRC improves the ranking ability by
contrasting the logit value for the sample with different labels and constrains
the predicted probability to be a function of the logit subtraction. We further
show that JRC consolidates the interpretation of logits, where the logits model
the joint distribution. With such an interpretation, we prove that JRC
approximately optimizes the contextualized hybrid discriminative-generative
objective. Experiments on public and industrial datasets and online A/B testing
show that our approach improves both ranking and calibration abilities. Since
May 2022, JRC has been deployed on the display advertising platform of Alibaba
and has obtained significant performance improvements.
Related papers
- A Self-boosted Framework for Calibrated Ranking [7.4291851609176645]
Calibrated Ranking is a scale-calibrated ranking system that pursues accurate ranking quality and calibrated probabilistic predictions simultaneously.
Previous methods need to aggregate the full candidate list within a single mini-batch to compute the ranking loss.
We propose a Self-Boosted framework for Calibrated Ranking (SBCR)
arXiv Detail & Related papers (2024-06-12T09:00:49Z) - Helen: Optimizing CTR Prediction Models with Frequency-wise Hessian
Eigenvalue Regularization [22.964109377128523]
Click-Through Rate (CTR) prediction holds paramount significance in online advertising and recommendation scenarios.
Despite the proliferation of recent CTR prediction models, the improvements in performance have remained limited.
arXiv Detail & Related papers (2024-02-23T15:00:46Z) - Adaptive Neural Ranking Framework: Toward Maximized Business Goal for
Cascade Ranking Systems [33.46891569350896]
Cascade ranking is widely used for large-scale top-k selection problems in online advertising and recommendation systems.
Previous works on learning-to-rank usually focus on letting the model learn the complete order or top-k order.
We name this method as Adaptive Neural Ranking Framework (abbreviated as ARF)
arXiv Detail & Related papers (2023-10-16T14:43:02Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Optimizing Partial Area Under the Top-k Curve: Theory and Practice [151.5072746015253]
We develop a novel metric named partial Area Under the top-k Curve (AUTKC)
AUTKC has a better discrimination ability, and its Bayes optimal score function could give a correct top-K ranking with respect to the conditional probability.
We present an empirical surrogate risk minimization framework to optimize the proposed metric.
arXiv Detail & Related papers (2022-09-03T11:09:13Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Probabilistic Permutation Graph Search: Black-Box Optimization for
Fairness in Ranking [53.94413894017409]
We present a novel way of representing permutation distributions, based on the notion of permutation graphs.
Similar to PL, our distribution representation, called PPG, can be used for black-box optimization of fairness.
arXiv Detail & Related papers (2022-04-28T20:38:34Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
We show how Mix-n-Match calibration strategies can help achieve remarkably better data-efficiency and expressive power.
We also reveal potential issues in standard evaluation practices.
Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks.
arXiv Detail & Related papers (2020-03-16T17:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.