Contrastive Learning for Object Detection
- URL: http://arxiv.org/abs/2208.06412v1
- Date: Fri, 12 Aug 2022 02:02:23 GMT
- Title: Contrastive Learning for Object Detection
- Authors: Rishab Balasubramanian, Kunal Rathore
- Abstract summary: We look to improve supervised contrastive learning by ranking classes based on their similarity.
We observe the impact of human bias (in the form of ranking) on the learned representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning is commonly used as a method of self-supervised learning
with the "anchor" and "positive" being two random augmentations of a given
input image, and the "negative" is the set of all other images. However, the
requirement of large batch sizes and memory banks has made it difficult and
slow to train. This has motivated the rise of Supervised Contrasative
approaches that overcome these problems by using annotated data. We look to
further improve supervised contrastive learning by ranking classes based on
their similarity, and observe the impact of human bias (in the form of ranking)
on the learned representations. We feel this is an important question to
address, as learning good feature embeddings has been a long sought after
problem in computer vision.
Related papers
- Brief Introduction to Contrastive Learning Pretext Tasks for Visual
Representation [0.0]
We introduce contrastive learning, a subset of unsupervised learning methods.
The purpose of contrastive learning is to embed augmented samples from the same sample near to each other while pushing away those that are not.
We offer some strategies from contrastive learning that have recently been published and are focused on pretext tasks for visual representation.
arXiv Detail & Related papers (2022-10-06T18:54:10Z) - Contrastive Learning for OOD in Object detection [0.0]
Contrastive learning is commonly applied to self-supervised learning.
Large batch sizes and memory banks have made it difficult and slow to train.
We show that our results are comparable to Supervised Contrastive Learning for image classification and object detection.
arXiv Detail & Related papers (2022-08-12T01:51:50Z) - Improving Transferability of Representations via Augmentation-Aware
Self-Supervision [117.15012005163322]
AugSelf is an auxiliary self-supervised loss that learns the difference of augmentation parameters between two randomly augmented samples.
Our intuition is that AugSelf encourages to preserve augmentation-aware information in learned representations, which could be beneficial for their transferability.
AugSelf can easily be incorporated into recent state-of-the-art representation learning methods with a negligible additional training cost.
arXiv Detail & Related papers (2021-11-18T10:43:50Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
We show that across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection.
We identify the problem as collective outliers -- groups of examples that active learning methods prefer to acquire but models fail to learn.
We show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases.
arXiv Detail & Related papers (2021-07-06T00:52:11Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
We introduce a novel incremental false negative detection for self-supervised contrastive learning.
During contrastive learning, we discuss two strategies to explicitly remove the detected false negatives.
Our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
arXiv Detail & Related papers (2021-06-07T15:29:14Z) - Hard Negative Mixing for Contrastive Learning [29.91220669060252]
We argue that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected.
We propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead.
arXiv Detail & Related papers (2020-10-02T14:34:58Z) - Delving into Inter-Image Invariance for Unsupervised Visual
Representations [108.33534231219464]
We present a study to better understand the role of inter-image invariance learning.
Online labels converge faster than offline labels.
Semi-hard negative samples are more reliable and unbiased than hard negative samples.
arXiv Detail & Related papers (2020-08-26T17:44:23Z) - Unsupervised Deep Metric Learning with Transformed Attention Consistency
and Contrastive Clustering Loss [28.17607283348278]
Existing approaches for unsupervised metric learning focus on exploring self-supervision information within the input image itself.
We observe that, when analyzing images, human eyes often compare images against each other instead of examining images individually.
We develop a new approach to unsupervised deep metric learning where the network is learned based on self-supervision information across images.
arXiv Detail & Related papers (2020-08-10T19:33:47Z) - On Mutual Information in Contrastive Learning for Visual Representations [19.136685699971864]
unsupervised, "contrastive" learning algorithms in vision have been shown to learn representations that perform remarkably well on transfer tasks.
We show that this family of algorithms maximizes a lower bound on the mutual information between two or more "views" of an image.
We find that the choice of negative samples and views are critical to the success of these algorithms.
arXiv Detail & Related papers (2020-05-27T04:21:53Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.