Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
- URL: http://arxiv.org/abs/2208.06677v5
- Date: Fri, 29 Nov 2024 08:58:27 GMT
- Title: Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
- Authors: Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Shuicheng Yan,
- Abstract summary: In deep learning, different kinds of deep networks typically need different extrapolations, which have to be chosen after multiple trials.
To relieve this issue and consistently improve the model training speed deep networks, we propose the ADAtive Nesterov momentum Transformer.
- Score: 134.83964935755964
- License:
- Abstract: In deep learning, different kinds of deep networks typically need different optimizers, which have to be chosen after multiple trials, making the training process inefficient. To relieve this issue and consistently improve the model training speed across deep networks, we propose the ADAptive Nesterov momentum algorithm, Adan for short. Adan first reformulates the vanilla Nesterov acceleration to develop a new Nesterov momentum estimation (NME) method, which avoids the extra overhead of computing gradient at the extrapolation point. Then, Adan adopts NME to estimate the gradient's first- and second-order moments in adaptive gradient algorithms for convergence acceleration. Besides, we prove that Adan finds an $\epsilon$-approximate first-order stationary point within $\mathcal{O}(\epsilon^{-3.5})$ stochastic gradient complexity on the non-convex stochastic problems (e.g., deep learning problems), matching the best-known lower bound. Extensive experimental results show that Adan consistently surpasses the corresponding SoTA optimizers on vision, language, and RL tasks and sets new SoTAs for many popular networks and frameworks, e.g., ResNet, ConvNext, ViT, Swin, MAE, DETR, GPT-2, Transformer-XL, and BERT. More surprisingly, Adan can use half of the training cost (epochs) of SoTA optimizers to achieve higher or comparable performance on ViT, GPT-2, MAE, etc., and also shows great tolerance to a large range of minibatch size, e.g., from 1k to 32k. Code is released at https://github.com/sail-sg/Adan, and has been used in multiple popular deep learning frameworks or projects.
Related papers
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
We propose a unified training framework for deep neural networks.
We introduce three instances of MARS that leverage preconditioned gradient optimization.
Results indicate that the implementation of MARS consistently outperforms Adam.
arXiv Detail & Related papers (2024-11-15T18:57:39Z) - AdaFisher: Adaptive Second Order Optimization via Fisher Information [22.851200800265914]
We present AdaFisher, an adaptive second-order that leverages a block-diagonal approximation to the Fisher information matrix for adaptive preconditioning gradient.
We demonstrate that AdaFisher outperforms the SOTAs in terms of both accuracy and convergence speed.
arXiv Detail & Related papers (2024-05-26T01:25:02Z) - Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning [2.695991050833627]
We propose a new optimization algorithm named CG-like-Adam for deep learning.
Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like.
Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
arXiv Detail & Related papers (2024-04-02T07:57:17Z) - Inverse-Free Fast Natural Gradient Descent Method for Deep Learning [52.0693420699086]
We present a fast natural gradient descent (FNGD) method that only requires inversion during the first epoch.
FNGD exhibits similarities to the average sum in first-order methods, leading to the computational complexity of FNGD being comparable to that of first-order methods.
arXiv Detail & Related papers (2024-03-06T05:13:28Z) - Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for
Deep Learning [8.173034693197351]
We propose a new per-layer adaptive step-size procedure for first-order optimization methods in deep learning.
The proposed approach exploits the layer-wise curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer.
Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules.
arXiv Detail & Related papers (2023-05-23T04:12:55Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks.
The training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix.
We propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer.
arXiv Detail & Related papers (2021-06-01T15:07:34Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite
Epochs [25.158203665218164]
We show that adaptive gradient methods can be faster than random shuffling SGD after finite time.
To the best of our knowledge, it is the first to demonstrate that adaptive gradient methods can be faster than SGD after finite time.
arXiv Detail & Related papers (2020-06-12T09:39:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.