Predicting skull fractures via CNN with classification algorithms
- URL: http://arxiv.org/abs/2208.06756v1
- Date: Sun, 14 Aug 2022 01:37:23 GMT
- Title: Predicting skull fractures via CNN with classification algorithms
- Authors: Md Moniruzzaman Emon, Tareque Rahman Ornob, Moqsadur Rahman
- Abstract summary: ResNet50 was developed to classify skull fractures from brain CT scans into three fracture categories.
It had the best overall F1-score of 96%, Hamming Score of 95%, Balanced accuracy Score of 94% & ROC AUC curve of 96% for the classification of skull fractures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer Tomography (CT) images have become quite important to diagnose
diseases. CT scan slice contains a vast amount of data that may not be properly
examined with the requisite precision and speed using normal visual inspection.
A computer-assisted skull fracture classification expert system is needed to
assist physicians. Convolutional Neural Networks (CNNs) are the most
extensively used deep learning models for image categorization since most often
time they outperform other models in terms of accuracy and results. The CNN
models were then developed and tested, and several convolutional neural network
(CNN) architectures were compared. ResNet50, which was used for feature
extraction combined with a gradient boosted decision tree machine learning
algorithm to act as a classifier for the categorization of skull fractures from
brain CT scans into three fracture categories, had the best overall F1-score of
96%, Hamming Score of 95%, Balanced accuracy Score of 94% & ROC AUC curve of
96% for the classification of skull fractures.
Related papers
- Convolutional Neural Network-Based Automatic Classification of
Colorectal and Prostate Tumor Biopsies Using Multispectral Imagery: System
Development Study [7.566742780233967]
We propose a CNN model for classifying colorectal and prostate tumors from multispectral images of biopsy samples.
Our results showed excellent performance, with an average test accuracy of 99.8% and 99.5% for the prostate and colorectal data sets, respectively.
The proposed CNN architecture was globally the best-performing system for classifying colorectal and prostate tumor images.
arXiv Detail & Related papers (2023-01-30T18:28:25Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Classifications of Skull Fractures using CT Scan Images via CNN with
Lazy Learning Approach [0.0]
We propose a new model called SkullNetV1 comprising a novel CNN by taking advantage of CNN for feature extraction and lazy learning approach.
Our suggested model achieved a subset accuracy of 88%, an F1 score of 93%, the Area Under the Curve (AUC) of 0.89 to 0.98, a Hamming score of 92% and a Hamming loss of 0.04.
arXiv Detail & Related papers (2022-03-21T08:01:25Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - A Light CNN for detecting COVID-19 from CT scans of the chest [9.088303226909279]
OVID-19 is a world-wide disease that has been declared as a pandemic by the World Health Organization.
Deep Learning has been extensively used in medical imaging and convolutional neural networks (CNNs) have been also used for classification of CT images.
We propose a light CNN design based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images.
arXiv Detail & Related papers (2020-04-24T07:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.