Acceleration of Subspace Learning Machine via Particle Swarm
Optimization and Parallel Processing
- URL: http://arxiv.org/abs/2208.07023v1
- Date: Mon, 15 Aug 2022 06:33:15 GMT
- Title: Acceleration of Subspace Learning Machine via Particle Swarm
Optimization and Parallel Processing
- Authors: Hongyu Fu, Yijing Yang, Yuhuai Liu, Joseph Lin, Ethan Harrison, Vinod
K. Mishra and C.-C. Jay Kuo
- Abstract summary: Subspace learning machine (SLM) has been proposed to offer higher performance in general classification and regression tasks.
Performance improvement is reached at the expense of higher computational complexity.
Experimental results show that the accelerated SLM method achieves a speed up factor of 577 in training time.
- Score: 23.33955958124822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Built upon the decision tree (DT) classification and regression idea, the
subspace learning machine (SLM) has been recently proposed to offer higher
performance in general classification and regression tasks. Its performance
improvement is reached at the expense of higher computational complexity. In
this work, we investigate two ways to accelerate SLM. First, we adopt the
particle swarm optimization (PSO) algorithm to speed up the search of a
discriminant dimension that is expressed as a linear combination of current
dimensions. The search of optimal weights in the linear combination is
computationally heavy. It is accomplished by probabilistic search in original
SLM. The acceleration of SLM by PSO requires 10-20 times fewer iterations.
Second, we leverage parallel processing in the SLM implementation. Experimental
results show that the accelerated SLM method achieves a speed up factor of 577
in training time while maintaining comparable classification/regression
performance of original SLM.
Related papers
- Seesaw: High-throughput LLM Inference via Model Re-sharding [8.840996987380484]
We present Seesaw, an inference engine optimized for throughput-oriented tasks.
Key idea behind Seesaw is dynamic model re-sharding, a technique that facilitates the dynamic reconfiguration of parallelization strategies.
arXiv Detail & Related papers (2025-03-09T04:14:06Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLM is an efficient multiplication-free model for large language models.
It achieves perplexity improvements of 5.6 and 22.7 points at comparable or lower latency.
Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM.
arXiv Detail & Related papers (2024-06-10T02:47:55Z) - Accelerating Matrix Factorization by Dynamic Pruning for Fast Recommendation [0.49399484784577985]
Matrix factorization (MF) is a widely used collaborative filtering algorithm for recommendation systems (RSs)
With the dramatically increased number of users/items in current RSs, the computational complexity for training a MF model largely increases.
We propose algorithmic methods to accelerate MF, without inducing any additional computational resources.
arXiv Detail & Related papers (2024-03-18T16:27:33Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast
Self-Adaptation [145.7321032755538]
Learning to Optimize (L2O) has drawn increasing attention as it often remarkably accelerates the optimization procedure of complex tasks.
This paper investigates a potential solution to this open challenge by meta-training an L2O that can perform fast test-time self-adaptation to an out-of-distribution task.
arXiv Detail & Related papers (2023-02-28T19:23:20Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm.
L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity.
Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
arXiv Detail & Related papers (2022-02-25T18:20:14Z) - Feature Whitening via Gradient Transformation for Improved Convergence [3.5579740292581]
We address the complexity drawbacks of feature whitening.
We derive an equivalent method, which replaces the sample transformations by a transformation to the weight gradients, applied to every batch of B samples.
We exemplify the proposed algorithms with ResNet-based networks for image classification demonstrated on the CIFAR and Imagenet datasets.
arXiv Detail & Related papers (2020-10-04T11:30:20Z) - Towards Understanding Label Smoothing [36.54164997035046]
Label smoothing regularization (LSR) has a great success in deep neural networks by training algorithms.
We show that an appropriate LSR can help to speed up convergence by reducing the variance.
We propose a simple yet effective strategy, namely Two-Stage LAbel smoothing algorithm (TSLA)
arXiv Detail & Related papers (2020-06-20T20:36:17Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.