Non-symmetric transition probability in generalized qubit models
- URL: http://arxiv.org/abs/2208.07135v1
- Date: Mon, 15 Aug 2022 12:09:55 GMT
- Title: Non-symmetric transition probability in generalized qubit models
- Authors: Gerd Niestegge
- Abstract summary: We present a class of binary models where the transition probability is not symmetric.
The transition probabilities are symmetric iff K is the unit ball in a Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum mechanical transition probability is symmetric. A
probabilistically motivated and more general quantum logical definition of the
transition probability was introduced in two preceding papers without
postulating its symmetry, but in all the examples considered there it remains
symmetric. Here we present a class of binary models where the transition
probability is not symmetric, using the extreme points of the unit interval in
an order unit space as quantum logic. We show that their state spaces are
strictly convex smooth compact convex sets and that each such set K gives rise
to a quantum logic of this class with the state space K. The transition
probabilities are symmetric iff K is the unit ball in a Hilbert space. In this
case, the quantum logic becomes identical with the projection lattice in a spin
factor which is a special type of formally real Jordan algebra.
Related papers
- Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Studying Stabilizer de Finetti Theorems and Possible Applications in Quantum Information Processing [0.0]
In quantum information theory, if a quantum state is invariant under permutations of its subsystems, its marginal can be approximated by a mixture of powers of a state on a single subsystem.
Recently, it has been discovered that a similar observation can be made for a larger symmetry group than permutations.
This naturally raises the question if similar improvements could be found for applications where this symmetry appears.
arXiv Detail & Related papers (2024-03-15T17:55:12Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Quantum transition probability in convex sets and self-dual cones [0.0]
We present a more elementary approach with a more generic structure for the observables.
The binary case gives rise to the generalized qubit models.
A novel geometric property that makes any compact convex set a matching state space is presented.
arXiv Detail & Related papers (2023-12-20T17:28:47Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Quantum Mechanics as a Theory of Incompatible Symmetries [77.34726150561087]
We show how classical probability theory can be extended to include any system with incompatible variables.
We show that any probabilistic system (classical or quantal) that possesses incompatible variables will show not only uncertainty, but also interference in its probability patterns.
arXiv Detail & Related papers (2022-05-31T16:04:59Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - The classical limit of Schr\"{o}dinger operators in the framework of
Berezin quantization and spontaneous symmetry breaking as emergent phenomenon [0.0]
A strict deformation quantization is analysed on the classical phase space $bR2n$.
The existence of this classical limit is in particular proved for ground states of a wide class of Schr"odinger operators.
The support of the classical state is included in certain orbits in $bR2n$ depending on the symmetry of the potential.
arXiv Detail & Related papers (2021-03-22T14:55:57Z) - Symmetries of quantum evolutions [0.5735035463793007]
Wigner's theorem establishes that every symmetry of quantum state space must be either a unitary transformation, or an antiunitary transformation.
We show that it is impossible to extend the time reversal symmetry of unitary quantum dynamics to a symmetry of the full set of quantum evolutions.
Our no-go theorem implies that any time symmetric formulation of quantum theory must either restrict the set of the allowed evolutions, or modify the operational interpretation of quantum states and processes.
arXiv Detail & Related papers (2021-01-13T09:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.