Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives
- URL: http://arxiv.org/abs/2208.07422v1
- Date: Mon, 15 Aug 2022 20:05:07 GMT
- Title: Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives
- Authors: Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri,
Je-Won Kang, Jonghye Woo
- Abstract summary: Unsupervised domain adaptation (UDA) is proposed to counter the performance drop on data in a target domain.
UDA has yielded promising results on natural image processing, video analysis, natural language processing, time-series data analysis, medical image analysis, etc.
- Score: 16.68091981866261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has become the method of choice to tackle real-world problems
in different domains, partly because of its ability to learn from data and
achieve impressive performance on a wide range of applications. However, its
success usually relies on two assumptions: (i) vast troves of labeled datasets
are required for accurate model fitting, and (ii) training and testing data are
independent and identically distributed. Its performance on unseen target
domains, thus, is not guaranteed, especially when encountering
out-of-distribution data at the adaptation stage. The performance drop on data
in a target domain is a critical problem in deploying deep neural networks that
are successfully trained on data in a source domain. Unsupervised domain
adaptation (UDA) is proposed to counter this, by leveraging both labeled source
domain data and unlabeled target domain data to carry out various tasks in the
target domain. UDA has yielded promising results on natural image processing,
video analysis, natural language processing, time-series data analysis, medical
image analysis, etc. In this review, as a rapidly evolving topic, we provide a
systematic comparison of its methods and applications. In addition, the
connection of UDA with its closely related tasks, e.g., domain generalization
and out-of-distribution detection, has also been discussed. Furthermore,
deficiencies in current methods and possible promising directions are
highlighted.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
This paper presents an unsupervised domain adaptation (UDA) method for predicting unlabeled target domain data.
We propose the Adversarial self-superVised domain Adaptation network for the TARget domain (AVATAR) algorithm.
Our proposed model significantly outperforms state-of-the-art methods on three UDA benchmarks.
arXiv Detail & Related papers (2023-04-28T20:31:56Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
We propose an Incomplete Data Imputation based Adversarial Network (IDIAN) model to address this new domain adaptation challenge.
In the proposed model, we design a data imputation module to fill the missing feature values based on the partial observations in the target domain.
We conduct experiments on both cross-domain benchmark tasks and a real world adaptation task with imperfect target domains.
arXiv Detail & Related papers (2020-12-03T00:07:40Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.