Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk
- URL: http://arxiv.org/abs/2208.07590v3
- Date: Thu, 30 May 2024 16:47:46 GMT
- Title: Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk
- Authors: Olivier C. Pasche, Sebastian Engelke,
- Abstract summary: We propose the EQRN model that combines tools from neural networks and extreme value theory.
We apply this method to forecast flood risk in the Swiss Aare catchment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Risk assessment for extreme events requires accurate estimation of high quantiles that go beyond the range of historical observations. When the risk depends on the values of observed predictors, regression techniques are used to interpolate in the predictor space. We propose the EQRN model that combines tools from neural networks and extreme value theory into a method capable of extrapolation in the presence of complex predictor dependence. Neural networks can naturally incorporate additional structure in the data. We develop a recurrent version of EQRN that is able to capture complex sequential dependence in time series. We apply this method to forecast flood risk in the Swiss Aare catchment. It exploits information from multiple covariates in space and time to provide one-day-ahead predictions of return levels and exceedance probabilities. This output complements the static return level from a traditional extreme value analysis, and the predictions are able to adapt to distributional shifts as experienced in a changing climate. Our model can help authorities to manage flooding more effectively and to minimize their disastrous impacts through early warning systems.
Related papers
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Semi-Supervised Deep Sobolev Regression: Estimation, Variable Selection
and Beyond [3.782392436834913]
We propose SDORE, a semi-supervised deep Sobolev regressor, for the nonparametric estimation of the underlying regression function and its gradient.
We conduct a comprehensive analysis of the convergence rates of SDORE and establish a minimax optimal rate for the regression function.
We also derive a convergence rate for the associated plug-in gradient estimator, even in the presence of significant domain shift.
arXiv Detail & Related papers (2024-01-09T13:10:30Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data [0.0]
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses.
This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program dataset.
arXiv Detail & Related papers (2022-12-15T19:23:02Z) - Regression modelling of spatiotemporal extreme U.S. wildfires via
partially-interpretable neural networks [0.0]
We propose a new methodological framework for performing extreme quantile regression using artificial neutral networks.
We unify linear, and additive, regression methodology with deep learning to create partially-interpretable neural networks.
arXiv Detail & Related papers (2022-08-16T07:42:53Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
We pursue a complementary machine-learning-based approach to climate prediction.
In particular, we find that a feedforward convolutional network with a Densenet architecture is able to outperform a convolutional LSTM in terms of predictive skill.
arXiv Detail & Related papers (2022-02-23T00:28:36Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.