Twin Papers: A Simple Framework of Causal Inference for Citations via
Coupling
- URL: http://arxiv.org/abs/2208.09862v1
- Date: Sun, 21 Aug 2022 10:42:33 GMT
- Title: Twin Papers: A Simple Framework of Causal Inference for Citations via
Coupling
- Authors: Ryoma Sato, Makoto Yamada, Hisashi Kashima
- Abstract summary: The main difficulty in investigating the effects is that we need to know counterfactual results, which are not available in reality.
The proposed framework regards a pair of papers that cite each other as twins.
We investigate twin papers that adopted different decisions, observe the progress of the research impact brought by these studies, and estimate the effect of decisions by the difference.
- Score: 40.60905158071766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The research process includes many decisions, e.g., how to entitle and where
to publish the paper. In this paper, we introduce a general framework for
investigating the effects of such decisions. The main difficulty in
investigating the effects is that we need to know counterfactual results, which
are not available in reality. The key insight of our framework is inspired by
the existing counterfactual analysis using twins, where the researchers regard
twins as counterfactual units. The proposed framework regards a pair of papers
that cite each other as twins. Such papers tend to be parallel works, on
similar topics, and in similar communities. We investigate twin papers that
adopted different decisions, observe the progress of the research impact
brought by these studies, and estimate the effect of decisions by the
difference in the impacts of these studies. We release our code and data, which
we believe are highly beneficial owing to the scarcity of the dataset on
counterfactual studies.
Related papers
- Apples, Oranges, and Software Engineering: Study Selection Challenges
for Secondary Research on Latent Variables [8.612556181934291]
The inability to measure abstract concepts directly poses a challenge for secondary studies in software engineering.
Standardized measurement instruments are rarely available, and even if they are, many researchers do not use them or do not even provide a definition for the studied concept.
SE researchers conducting secondary studies therefore have to decide a) which primary studies intended to measure the same construct, and b) how to compare and aggregate vastly different measurements for the same construct.
arXiv Detail & Related papers (2024-02-13T17:32:17Z) - Time to Stop and Think: What kind of research do we want to do? [1.74048653626208]
In this paper, we focus on the field of metaheuristic optimization, since it is our main field of work.
Our main goal is to sew the seed of sincere critical assessment of our work, sparking a reflection process both at the individual and the community level.
All the statements included in this document are personal views and opinions, which can be shared by others or not.
arXiv Detail & Related papers (2024-02-13T08:53:57Z) - Position: AI/ML Influencers Have a Place in the Academic Process [82.2069685579588]
We investigate the role of social media influencers in enhancing the visibility of machine learning research.
We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023.
Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers.
arXiv Detail & Related papers (2024-01-24T20:05:49Z) - CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCite is a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers.
It is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings.
We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts.
arXiv Detail & Related papers (2023-11-05T23:09:39Z) - Chain-of-Factors Paper-Reviewer Matching [32.86512592730291]
We propose a unified model for paper-reviewer matching that jointly considers semantic, topic, and citation factors.
We demonstrate the effectiveness of our proposed Chain-of-Factors model in comparison with state-of-the-art paper-reviewer matching methods and scientific pre-trained language models.
arXiv Detail & Related papers (2023-10-23T01:29:18Z) - Near-Optimal Reviewer Splitting in Two-Phase Paper Reviewing and
Conference Experiment Design [76.40919326501512]
We consider the question: how should reviewers be divided between phases or conditions in order to maximize total assignment similarity?
We empirically show that across several datasets pertaining to real conference data, dividing reviewers between phases/conditions uniformly at random allows an assignment that is nearly as good as the oracle optimal assignment.
arXiv Detail & Related papers (2021-08-13T19:29:41Z) - Industry and Academic Research in Computer Vision [5.634825161148484]
This work aims to study the dynamic between research in the industry and academia in computer vision.
The results are demonstrated on a set of top-5 vision conferences that are representative of the field.
arXiv Detail & Related papers (2021-07-10T20:09:52Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z) - Aspect-based Sentiment Analysis of Scientific Reviews [12.472629584751509]
We show that the distribution of aspect-based sentiments obtained from a review is significantly different for accepted and rejected papers.
As a second objective, we quantify the extent of disagreement among the reviewers refereeing a paper.
We also investigate the extent of disagreement between the reviewers and the chair and find that the inter-reviewer disagreement may have a link to the disagreement with the chair.
arXiv Detail & Related papers (2020-06-05T07:06:01Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.