GCISG: Guided Causal Invariant Learning for Improved Syn-to-real
Generalization
- URL: http://arxiv.org/abs/2208.10024v1
- Date: Mon, 22 Aug 2022 02:39:05 GMT
- Title: GCISG: Guided Causal Invariant Learning for Improved Syn-to-real
Generalization
- Authors: Gilhyun Nam, Gyeongjae Choi, Kyungmin Lee
- Abstract summary: Training a deep learning model with artificially generated data can be an alternative when training data are scarce.
In this paper, we characterize the domain gap by using a causal framework for data generation.
We propose causal invariance learning which encourages the model to learn a style-invariant representation that enhances the syn-to-real generalization.
- Score: 1.2215956380648065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a deep learning model with artificially generated data can be an
alternative when training data are scarce, yet it suffers from poor
generalization performance due to a large domain gap. In this paper, we
characterize the domain gap by using a causal framework for data generation. We
assume that the real and synthetic data have common content variables but
different style variables. Thus, a model trained on synthetic dataset might
have poor generalization as the model learns the nuisance style variables. To
that end, we propose causal invariance learning which encourages the model to
learn a style-invariant representation that enhances the syn-to-real
generalization. Furthermore, we propose a simple yet effective feature
distillation method that prevents catastrophic forgetting of semantic knowledge
of the real domain. In sum, we refer to our method as Guided Causal Invariant
Syn-to-real Generalization that effectively improves the performance of
syn-to-real generalization. We empirically verify the validity of proposed
methods, and especially, our method achieves state-of-the-art on visual
syn-to-real domain generalization tasks such as image classification and
semantic segmentation.
Related papers
- Fine-Tuning Pre-trained Language Models for Robust Causal Representation Learning [26.29386609645171]
Fine-tuning of pre-trained language models (PLMs) has been shown to be effective across various domains.
We show that a robust representation can be derived through a so-called causal front-door adjustment, based on a decomposition assumption.
Our work thus sheds light on the domain generalization problem by introducing links between fine-tuning and causal mechanisms into representation learning.
arXiv Detail & Related papers (2024-10-18T11:06:23Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized
Zero-Shot Learning [0.7420433640907689]
Generalized Zero-Shot Learning (GZSL) recognizes unseen classes by transferring knowledge from the seen classes.
This paper introduces a dual strategy to address the generalization gap.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Syntactically Robust Training on Partially-Observed Data for Open
Information Extraction [25.59133746149343]
Open Information Extraction models have shown promising results with sufficient supervision.
We propose a syntactically robust training framework that enables models to be trained on a syntactic-abundant distribution.
arXiv Detail & Related papers (2023-01-17T12:39:13Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
We propose a novel style interleaved learning (IL) framework for DG ReID training.
Unlike conventional learning strategies, IL incorporates two forward propagations and one backward propagation for each iteration.
We show that our model consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID.
arXiv Detail & Related papers (2022-07-07T07:41:32Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - Contrastive Syn-to-Real Generalization [125.54991489017854]
We make a key observation that the diversity of the learned feature embeddings plays an important role in the generalization performance.
We propose contrastive synthetic-to-real generalization (CSG), a novel framework that leverages the pre-trained ImageNet knowledge to prevent overfitting to the synthetic domain.
We demonstrate the effectiveness of CSG on various synthetic training tasks, exhibiting state-of-the-art performance on zero-shot domain generalization.
arXiv Detail & Related papers (2021-04-06T05:10:29Z) - DomainMix: Learning Generalizable Person Re-Identification Without Human
Annotations [89.78473564527688]
This paper shows how to use labeled synthetic dataset and unlabeled real-world dataset to train a universal model.
In this way, human annotations are no longer required, and it is scalable to large and diverse real-world datasets.
Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations.
arXiv Detail & Related papers (2020-11-24T08:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.