Socially Fair Center-based and Linear Subspace Clustering
- URL: http://arxiv.org/abs/2208.10095v1
- Date: Mon, 22 Aug 2022 07:10:17 GMT
- Title: Socially Fair Center-based and Linear Subspace Clustering
- Authors: Sruthi Gorantla, Kishen N. Gowda, Amit Deshpande, Anand Louis
- Abstract summary: Center-based clustering and linear subspace clustering are popular techniques to partition real-world data into smaller clusters.
Different clustering cost per point for different sensitive groups can lead to fairness-related harms.
We propose a unified framework to solve socially fair center-based clustering and linear subspace clustering.
- Score: 8.355270405285909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Center-based clustering (e.g., $k$-means, $k$-medians) and clustering using
linear subspaces are two most popular techniques to partition real-world data
into smaller clusters. However, when the data consists of sensitive demographic
groups, significantly different clustering cost per point for different
sensitive groups can lead to fairness-related harms (e.g., different
quality-of-service). The goal of socially fair clustering is to minimize the
maximum cost of clustering per point over all groups. In this work, we propose
a unified framework to solve socially fair center-based clustering and linear
subspace clustering, and give practical, efficient approximation algorithms for
these problems. We do extensive experiments to show that on multiple benchmark
datasets our algorithms either closely match or outperform state-of-the-art
baselines.
Related papers
- Fair Clustering for Data Summarization: Improved Approximation Algorithms and Complexity Insights [16.120911591795295]
In some applications all data points can be chosen as centers, in the general setting, centers must be chosen from a subset of points, referred as facilities or suppliers.
In this work, we focus on fair data summarization modeled as the fair $k$-supplier problem, where data consists of several groups, and a minimum number of centers must be selected from each group.
arXiv Detail & Related papers (2024-10-16T18:00:19Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Fair Minimum Representation Clustering via Integer Programming [0.6906005491572401]
Clustering is an unsupervised learning task that aims to partition data into a set of clusters.
In this paper, we study the k-means and k-medians clustering problems with the additional constraint that each group must have a minimum level of representation.
We present an alternating minimization algorithm, called MiniReL, that directly incorporates the fairness constraints.
arXiv Detail & Related papers (2024-09-04T00:13:40Z) - Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClust produces consensus clustering solutions that consistently outperform single-clustering baselines.
Our method effectively controls diversity across frameworks and datasets with very small additional computational cost.
arXiv Detail & Related papers (2023-04-03T14:45:43Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
Clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters.
We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms.
We show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
arXiv Detail & Related papers (2022-12-29T22:02:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
equiwide clustering relies neither on density nor on a predefined number of expected classes, but on a dissimilarity threshold.
We review and evaluate suitable clustering algorithms to identify trade-offs between the various practical solutions for this clustering problem.
arXiv Detail & Related papers (2021-09-28T12:02:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.