An Alternative Approach to Quantum Imaginary Time Evolution
- URL: http://arxiv.org/abs/2208.10535v1
- Date: Mon, 22 Aug 2022 18:33:31 GMT
- Title: An Alternative Approach to Quantum Imaginary Time Evolution
- Authors: Pejman Jouzdani, Calvin W. Johnson, Eduardo R. Mucciolo, and Ionel
Stetcu
- Abstract summary: We present an alternative approach to implement the imaginary-time (ITE) quantum algorithm.
We argue that the number of basis states needed at those steps to achieve an accurate solution can be kept of.
We illustrate our algorithm through numerical implementation on an IBM quantum simulator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is increasing interest in quantum algorithms that are based on the
imaginary-time evolution (ITE), a successful classical numerical approach to
obtain ground states. However, most of the proposals so far require heavy
post-processing computational steps on a classical computer, such as solving
linear equations. Here we provide an alternative approach to implement ITE. A
key feature in our approach is the use of an orthogonal basis set: the
propagated state is efficiently expressed in terms of orthogonal basis states
at every step of the evolution. We argue that the number of basis states needed
at those steps to achieve an accurate solution can be kept of the order of $n$,
the number of qubits, by controlling the precision (number of significant
digits) and the imaginary-time increment. The number of quantum gates per
imaginary-time step is estimated to be polynomial in $n$. Additionally, while
in many QAs the locality of the Hamiltonian is a key assumption, in our
algorithm this restriction is not required. This characteristic of our
algorithm renders it useful for studying highly nonlocal systems, such as the
occupation-representation nuclear shell model. We illustrate our algorithm
through numerical implementation on an IBM quantum simulator.
Related papers
- Efficient and practical Hamiltonian simulation from time-dependent product formulas [1.2534672170380357]
We propose an approach for implementing time-evolution of a quantum system using product formulas.
Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer.
Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms, the performance of the algorithms we propose is highly competitive in practice.
arXiv Detail & Related papers (2024-03-13T17:29:05Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Exact and efficient Lanczos method on a quantum computer [0.0]
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space.
The construction is exact in the sense that the Krylov space is identical to that of the Lanczos method.
arXiv Detail & Related papers (2022-08-01T01:57:23Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Probabilistic imaginary-time evolution by using forward and backward
real-time evolution with a single ancilla: first-quantized eigensolver of
quantum chemistry for ground states [0.0]
Imaginary-time evolution (ITE) on a quantum computer is a promising formalism for obtaining the ground state of a quantum system.
We propose a new approach of PITE which requires only a single ancillary qubit.
We discuss the application of our approach to quantum chemistry by focusing on the scaling of computational cost.
arXiv Detail & Related papers (2021-11-24T12:54:27Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.