Improving Personality Consistency in Conversation by Persona Extending
- URL: http://arxiv.org/abs/2208.10816v1
- Date: Tue, 23 Aug 2022 09:00:58 GMT
- Title: Improving Personality Consistency in Conversation by Persona Extending
- Authors: Yifan Liu, Wei Wei, Jiayi Liu, Xianling Mao, Rui Fang, and Dangyang
Chen
- Abstract summary: We propose a novel retrieval-to-prediction paradigm consisting of two subcomponents, namely, Persona Retrieval Model (PRM) and Posterior-scored Transformer (PS-Transformer)
Our proposed model yields considerable improvements in both automatic metrics and human evaluations.
- Score: 22.124187337032946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Endowing chatbots with a consistent personality plays a vital role for agents
to deliver human-like interactions. However, existing personalized approaches
commonly generate responses in light of static predefined personas depicted
with textual description, which may severely restrict the interactivity of
human and the chatbot, especially when the agent needs to answer the query
excluded in the predefined personas, which is so-called out-of-predefined
persona problem (named OOP for simplicity). To alleviate the problem, in this
paper we propose a novel retrieval-to-prediction paradigm consisting of two
subcomponents, namely, (1) Persona Retrieval Model (PRM), it retrieves a
persona from a global collection based on a Natural Language Inference (NLI)
model, the inferred persona is consistent with the predefined personas; and (2)
Posterior-scored Transformer (PS-Transformer), it adopts a persona posterior
distribution that further considers the actual personas used in the ground
response, maximally mitigating the gap between training and inferring.
Furthermore, we present a dataset called IT-ConvAI2 that first highlights the
OOP problem in personalized dialogue. Extensive experiments on both IT-ConvAI2
and ConvAI2 demonstrate that our proposed model yields considerable
improvements in both automatic metrics and human evaluations.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Towards Building a Personalized Dialogue Generator via Implicit User
Persona Detection [0.0]
We consider high-quality transmission is essentially built based on apprehending the persona of the other party.
Motivated by this, we propose a novel personalized dialogue generator by detecting implicit user persona.
arXiv Detail & Related papers (2022-04-15T08:12:10Z) - Dual Task Framework for Debiasing Persona-grounded Dialogue Dataset [17.403065663306567]
We introduce a data-centric approach for the task of improving persona-conditioned dialogue agents.
Specifically, we augment relevant personas to improve dialogue dataset/agent, by leveraging the primal-dual structure of the two tasks.
Experiments on Persona-Chat show that our approach outperforms pre-trained LMs by an 11.7 point gain in terms of accuracy.
arXiv Detail & Related papers (2022-02-11T04:08:46Z) - Bilateral Personalized Dialogue Generation with Dynamic Persona-Aware
Fusion [3.5433229509828155]
We propose a bilateral personalized dialogue generation (BPDG) method with dynamic persona-aware fusion via multi-task transfer learning.
The experimental results show that the proposed method outperforms several state-of-the-art methods in terms of both automatic and manual evaluations.
arXiv Detail & Related papers (2021-06-15T03:21:19Z) - Partner Matters! An Empirical Study on Fusing Personas for Personalized
Response Selection in Retrieval-Based Chatbots [51.091235903442715]
This paper makes an attempt to explore the impact of utilizing personas that describe either self or partner speakers on the task of response selection.
Four persona fusion strategies are designed, which assume personas interact with contexts or responses in different ways.
Empirical studies on the Persona-Chat dataset show that the partner personas can improve the accuracy of response selection.
arXiv Detail & Related papers (2021-05-19T10:32:30Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
We leverage social media feedback data to build a large-scale training dataset for feedback prediction.
We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data.
Our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback.
arXiv Detail & Related papers (2020-09-15T10:50:05Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.